Стеклянные волокна для упрочнения органических и/или неорганических материалов, содержащие их композиционные материалы и используемый состав

Изобретение относится к упрочняющим стеклянным нитям, состав которых включает следующие компоненты в определенных далее пределах, выраженных в весовых процентах:

SiO2 50-65%, Al2O3 12-20%, СаО 13-16%, MgO 6-12%, В2О3 0-3%, TiO2 0-3%, Na2O+K2O<2%, F2 0-1%, Fe2O3<1%. Вышеупомянутые волокна состоят из стекла, являющего превосходный компромисс между механическими свойствами, представленными удельным значением модуля Юнга, и условиями плавления и вытяжки. Техническая задача изобретения - получение стекла с высоким удельным модулем Юнга. Удельный модуль Юнга полученного стекла составляет более 33,5 МПа·кг-1·м-3. Композиционный материал, изготовленный из стеклянных нитей указанного состава, содержит также один или более органических и/или неорганических материалов. 3 н. и 3 з.п. ф-лы, 1 табл.

 

Настоящее изобретение касается стеклянных нитей ("или волокон") для "упрочнения", то есть способных упрочнять органические и/или неорганические материалы и используемых как текстильные волокна, упомянутые нити могут быть получены способом, заключающимся в механическом вытягивании струек расплавленного стекла, вытекающих из отверстий, расположенных в основании фильеры, нагреваемой, главным образом, за счет эффекта Джоуля.

Более точно, объектом настоящего изобретения являются стеклянные волокна, имеющие повышенное удельное значение модуля Юнга и представляющие четверную композицию типа SiO2-Al2O3-CaO-MgO, являющуюся особенно привлекательной.

Область, относящаяся к упрочняющим стеклянным волокнам - это очень своеобразная область индустрии стекла. Эти волокна получают исходя из специфических составов стекла, используемое стекло должно иметь возможность быть вытянутым в виде волокон диаметром нескольких микрометров, следуя вышеуказанному способу, и позволять изготовление непрерывных волокон, способных выполнять роль упрочнителя.

В некоторых случаях применения, в частности в авиационной промышленности, пытаются получать детали большого размера, способные функционировать в динамических условиях и которые, следовательно, способны сопротивляться высоким механическим нагрузкам. Эти детали чаще всего изготавливают на основе органических и/или неорганических веществ и упрочнителя, например, в виде стеклянных волокон, которые занимают, как правило, более 50% общего объема.

Улучшение механических свойств и ресурса таких деталей происходит путем повышения механических показателей упрочнителя, в частности модуля Юнга при постоянной плотности упрочнителя ρ, что означает увеличение удельного значения модуля Юнга (E/ρ).

Свойства упрочнителя, в случае упрочнения стеклянными волокнами, регулируются, главным образом, составом стекла, из которого они изготовлены. Наиболее известные для упрочнения органических и/или неорганических материалов стеклянные волокна состоят из стекла E и R.

Волокна из стекла E обычно используются для изготовления разного рода упрочнителей, например, в виде тканей. Условия, при которых стекло E может быть вытянуто в волокно, очень благоприятны: рабочая температура, соответствующая температуре, при которой стекло имеет вязкость, близкую к 1000 пуаз, относительно низка, порядка 1200°C, температура ликвидуса ниже рабочей температуры приблизительно на 120°C и скорость его расстекловывания мала.

Состав стекла E, определенный в норме ASTM D 578-98 для применения в областях электроники и авиационной промышленности, следующий (в весовых процентах): 52-56% SiO2; 12-16% Al2O3; 16-25% СаО; 5-10% В2O3; 0-5% MgO; 0-2% Na2O+K2O; 0-0,8% TiO2; 0,05-0,4% Fe2O3; 0-1% F2.

Тем не менее, стекло E имеет удельную величину модуля Юнга порядка 33 МПа·кг-1·м3, что недостаточно для целевого применения.

В норме ASTM D 578-98 описаны также другие упрочняющие волокна из стекла E, в случае необходимости без бора. Эти волокна имеют следующий состав (в весовых процентах): 52-62% SiO2; 12-16% Al2O3; 16-25% СаО; 0-10% В2O3; 0-5% MgO; 0-2% Na2O+K2O; 0-1,5% TiO2; 0,05-0,8% Fe2O3; 0-1% F2.

Условия, необходимые для получения волокна из стекла E без бора, менее благоприятные, чем для стекла E с бором, но они остаются во всяком случае экономически приемлемыми.

Удельная величина модуля Юнга находится на уровне характеристик, эквивалентном для стекла E.

Из патента США 4199364 известно стекло E без бора и без фтора, которое имеет улучшенное сопротивление разрыву. Это стекло содержит, в частности, окись лития.

Стекло R известно своими повышенными механическими свойствами и показывает удельное значение модуля Юнга порядка 35,9 МПа·кг-1·м-3. Зато условия плавления и вытяжки волокон здесь сложнее, чем для упомянутых стекол типа E, и таким образом, его конечная стоимость выше.

Состав стекла R приведен в FR-A-1435073. Оно состоит из следующих компонентов (в весовых процентах): 50-65% SiO2; 20-30% Al2O3; 2-10% СаО; 5-20% MgO; 15-25% СаО+MgO; SiO2/Al2O3=2-2,8; Mg0/SiO2<0,3.

Предпринимались и другие попытки увеличить механическую прочность стеклянных волокон, но главным образом в ущерб их склонности к вытяжке, отчего получение последних становилось более сложным или требовало модификации существующих установок для их вытяжки.

Таким образом, существует потребность располагать упрочняющим стеклянным волокном, имеющим стоимость максимально возможно близкую к стоимости стекла E и представляющим механические свойства на уровне, сравнимом с достигнутым для стекла R.

Задачей настоящего изобретения является получение непрерывных упрочняющих стеклянных волокон, механические свойства которых были бы такого же порядка величины, что и для стекла R, в особенности в части, касающейся удельной величины модуля Юнга, а характеристики плавления и вытяжки - удовлетворительными для обеспечения экономичных условий их производства.

Другая задача изобретения состоит в получении экономичных стеклянных волокон, не содержащих окиси лития.

Эти задачи решают благодаря стекловолокну, чей состав включает главным образом следующие компоненты в определенных далее пределах, выраженных в весовых процентах:

SiO2 - 50-65%

Al2O3 - 12-20%

СаО - 13-16%

MgO - 6-12%

В2O3 - 0-3%

TiO2 - 0-3%

Na2O+K2O<2%

F2 - 0-1%

Fe2O3<1%

Кремнезем SiO2 - это один из оксидов, образующих решетку стекол согласно изобретению и играющих существенную роль в их стабильности. В рамках изобретения, когда содержание кремнезема ниже 50%, вязкость стекла становится слишком слабой и опасность расстекловывания в процессе вытяжки увеличивается. При содержании свыше 65% стекло оказывается очень вязким и трудно плавится. Предпочтительно содержание кремнезема находится в пределах между 56 и 61%.

Глинозем Al2O3 также является ответственным за образование решетки стекол согласно изобретению и в сочетании с кремнеземом оказывает основное влияние на величину модуля. В рамках границ, определенных согласно изобретению, снижение содержания этого оксида ниже 12% вызывает увеличение температуры ликвидуса, в то время как слишком сильное повышение содержания этого оксида свыше 20% влечет за собой опасность расстекловывания и увеличение вязкости. Предпочтительно, содержание глинозема в отобранных составах находится между 14 и 18%. Преимущественно, суммарное содержание кремнезема и глинозема составляет свыше 70%, что позволяет получать представляющие интерес удельные значения модуля Юнга.

Известь СаО позволяет отрегулировать вязкость и контролировать процесс расстекловывания стекол. Содержание СаО находится предпочтительно между 13 и 16%.

Оксид магния MgO, так же как СаО, играет роль разжижающего компонента и оказывает также благоприятное воздействие на удельную величину модуля Юнга. Содержание MgO составляет между 6 и 12%, предпочтительно между 8 и 10%. Предпочтительно, весовое соотношение СаО/MgO выше или равно 1,40 и преимущественно, ниже или равно 1,8.

Еще предпочтительнее иметь суммарное содержание Al2O3 и MgO выше или равное 24%, что позволяет получать вполне удовлетворительные удельные значения модуля Юнга и хорошие условия вытяжки.

Оксид бора В2O3 оказывает разжижающее действие. Его содержание в составе стекла согласно изобретению ограничивается 3%, предпочтительно 2%, чтобы избегать проблем возгонки и вредных выбросов.

Оксид титана оказывает разжижающее действие и способствует повышению удельного значения модуля Юнга. Он может присутствовать в качестве примеси (его доля в составе будет тогда от 0 до 0,6%) или быть добавленным по желанию, произвольно. В этом последнем случае необходимо использование необычного сырья, что, в свою очередь, увеличивает стоимость состава. В рамках настоящего изобретения намеренное добавление TiO2 выгодно только для содержания ниже 3%, предпочтительно ниже 2%.

Na2O и K2O могут быть введены в состав согласно изобретению, чтобы способствовать ограничению расстекловывания и уменьшать в случае необходимости вязкость стекла. Содержание Na2O и K2O должно оставаться между тем ниже 2%, чтобы избегать вредного уменьшения гидролитического сопротивления стекла. Предпочтительно, состав содержит менее 0,8% этих двух оксидов.

Фтор F2 может присутствовать в составе, чтобы облегчать плавление стекла и его вытяжку. Тем не менее, его содержание ограничено 1%, так как свыше этого могут проявляться опасности вредных выбросов и коррозии огнеупоров печи.

Оксиды железа (выраженные в виде Fe2O3) присутствуют в составе согласно изобретению главным образом в качестве примесей. Содержание Fe2O3 должно оставаться ниже 1%, предпочтительно ниже 0,8%, чтобы не вредить непоправимым образом цвету волокон и работе установки вытяжки, в частности передаче тепла в печи.

Стеклянные волокна согласно изобретению свободны от оксида лития. Помимо высокой стоимости, этот оксид оказывает отрицательное воздействие на гидролитическое сопротивление стекла.

Предпочтительно, стеклянные волокна имеют состав, включающий главным образом следующие компоненты в определенных ниже пределах, выраженных в весовых процентах:

SiO2 - 56-61%

AlO3 - 14-18%

СаО - 13-16%

MgO - 8-10%

В2O3 - 0-2%

TiO2 - 0-2%

Na2O+K2O<0,8%

F2 - 0-1%

Fe2O3<0,8%

Особенно благоприятно для вышеупомянутых составов весовое соотношение Al2O3/(Al2O3+CaO+MgO), которое меняется от 0,4 до 0,44, предпочтительно ниже 0,42, что позволяет получать стекла, имеющие температуру ликвидуса ниже или равную 1250°C.

Стеклянные волокна согласно изобретению получают из стекол вышеописанного состава согласно следующему способу: растягивают множество струек расплавленного стекла, вытекающего из множества отверстий, расположенных в основании одной или нескольких фильер, в виде одного или нескольких полотен непрерывных нитей, затем объединяют нити в одно или несколько волокон, которые собирают на подвижном суппорте. Речь может идти о вращающемся суппорте, когда волокна собраны в виде смотки, или о перемещающемся суппорте, когда волокна обрезаются устройством, служащим одновременно для их вытягивания, или когда волокна отбрасываются устройством, служащим одновременно для их вытягивания, таким образом, чтобы образовывать из них мат.

Волокна, полученные в случае необходимости после других операций превращения, могут таким образом представлять собой различные формы: непрерывные или разрезанные волокна, косы, ленты или маты, эти волокна состоят из нитей диаметром, изменяющимся от 5 до приблизительно 30 микрометров.

Расплавленное стекло, питающее фильеры, получают исходя из чистого или чаще всего из естественного сырья (то есть могущее содержать примеси в виде следовых количеств), когда эти вещества смешивают в соответствующих пропорциях, а затем расплавляют. Температура расплавленного стекла регулируется традиционным способом, таким образом, чтобы обеспечивать вытяжку и избегать проблем расстекловывания. Перед объединением в волокна нити обычно покрывают промасливающим составом, призванным защищать их от абразивного воздействия и облегчающим их дальнейшее соединение с упрочняемыми материалами.

Композиционные материалы, полученные с использованием волокон согласно изобретению, включают по меньшей мере одно органическое вещество и/или по меньшей мере одно неорганическое вещество и стеклянные волокна, хотя бы часть из которых являются волокнами согласно изобретению.

Нижеследующие примеры позволяют иллюстрировать изобретение, никоим образом его не ограничивая.

Стеклянные волокна, состоящие из стеклянных нитей диаметром 17 мкм, получены путем вытяжки расплавленного стекла, состав которого, выраженный в весовых процентах, приведен в таблице 1.

Отмечается, что T(log η=3) - это температура, при которой вязкость стекла равна 103 пуаз (деципаскаль-секунда).

Отмечается, что Тликвидус - это температура ликвидуса стекла, соответствующая температуре, при которой наиболее тугоплавкая фаза, которая может расстекловываться в стекле, имеет нулевую скорость роста, и соответствующая также температуре плавления этой расстекловавшейся фазы.

Приведены удельные величины модуля Юнга, соответствующие отношению значений модуля Юнга (измеренных согласно норме ASTM C 1259-01) к плотности стеклянного образца, использованного для измерения.

В качестве сравнительных примеров приведены результаты измерений для стекол E и R.

Показано, что примеры согласно изобретению представляют превосходные сочетания свойств плавления и вытяжки и механических свойств. Эти свойства вытяжки составляют особенное преимущество, в частности, с температурой ликвидуса, равной 1280°C, более низкой, чем у стекла R. Диапазон вытяжки положителен, с отклонением, в частности, между T(log η=3) и Тликвидус порядка приблизительно 10-50°C.

Удельные величины модуля Юнга составов согласно изобретению имеют тот же порядок величины, что и стекло R, и заметно выше, чем стекло E.

В случае стекол согласно изобретению замечательным образом достигают механических свойств того же уровня, что и для стекла R, существенно снижая при этом температуру вытяжки, чтобы приблизиться к ее значению, полученному для стекла E.

Волокна из стекла согласно изобретению более экономичны, чем волокна из стекла R, которые они могут успешно заменить в некоторых областях применения, в частности в авиационной промышленности или для усиления лопастей вертолетов или оптических кабелей.

Таблица 1
Пример 1 Пример 2 Пример 3 Пример 4 Пример 5 Пример 6 Пример 7 Стекло Е Стекло R
SiO2 59,5 58,8 58,0 57,7 57,5 58,5 59,5 54,4 60,0
Al2O3 15,9 17,0 17,9 16,0 16,0 16,9 16,2 14,5 25,0
CaO 14,8 14,6 14,4 14,8 14,9 13,3 13,8 21,2 9,0
MgO 8,8 8,6 8,5 8,7 8,8 10,0 9,5 0,3 6,0
B2O3 1,8 7,3
TiO2 0,1 0,1 0,2 0,1 2,0 0,1 0,1
Na2O 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,6
K2O 0,5 0,5 0,6 0,5 0,5 0,5 0,5
T(log η=3) (°C) 1281 1285 1289 1254 1271 1292 1298 1203 1410
Тликвидус (°C) 1230 1260 1280 1220 1240 1250 1210 1080 1330
Удельный модуль Юнга МПа·кг-1·м3 35,2 35,4 35,4 35,4 35,6 35,8 35,6 33,0 35,9

1. Стекло для получения упрочняющей стеклянной нити, полученное из состава, включающего, главным образом, следующие компоненты в определенных далее пределах, выраженных в весовых процентах:
SiO2 - 50-65%
Аl2О3 - 12-20%
СаО - 13-16%
MgO - 6-12%
В2О3 - 0-3%
TiO2 - 0-3%
Na2O+K2O<2%
F2 - 0-1%
Fe2O3<1%, где указанный состав стекла не содержит Li2O,
содержание MgO+Аl2О3 превышает 24%, и весовое соотношение CaO/MgO превышает или равно 1,4 и предпочтительно ниже или равно 1,8, и стекло имеет величину удельного модуля Юнга более 33,5 МПа·кг-1·м-3.

2. Упрочняющая стеклянная нить, состав которой включает, главным образом, следующие компоненты в определенных далее пределах, выраженных в весовых процентах:
SiO2 - 50-65%
Аl2О3 - 12-20%
СаО - 13-16%
MgO - 6-12%
B2O3 - 0-3%
TiO2 - 0-3%
Na2O+K2O<2%
F2 - 0-1%
Fe2O3<1%,
где указанная упрочняющая стеклянная нить не содержит Li2O,
содержание MgO+Аl2О3 превышает 24%, весовое соотношение CaO/MgO превышает или равно 1,4 и предпочтительно ниже или равно 1,8 и имеет величину удельного модуля Юнга более 33,5 МПа·кг-1·м-3.

3. Стеклянная нить по п.2, отличающаяся тем, что в ее составе содержание SiO2+Аl2О3 превышает или равно 70%.

4. Стеклянная нить по п.2 или 3, отличающаяся тем, что в ее составе весовое соотношение Al2O3/(Al2O3+CaO+MgO) изменяется от 0,4 до 0,44 и предпочтительно ниже 0,42.

5. Стеклянная нить по п.2 или 3, отличающаяся тем, что в ее состав включены, главным образом, следующие компоненты:
SiO2 - 56-61%
Аl2O3 - 14-18%
СаО - 13-16%
MgO - 8-10%
В2О3 - 0-2%
TiO2 - 0-2%
Na2O+K2O<0,8%
F2 - 0-1%
Fe2O3<0,8%

6. Композиционный материал из стеклянных нитей и одного или более органического и/или неорганического материала, отличающийся тем, что он содержит стеклянные нити по любому из пп.2-5.



 

Похожие патенты:
Изобретение относится к составам стекломассы для производства волокна, изделия из которого используются в качестве тепловой изоляции трубопроводов, тепловых агрегатов и т.д.
Изобретение относится к области технологии силикатов и касается составов стекла для стекловолокна, которое может быть использовано для изготовления фильтров, применяемых в производстве химических, биологически активных веществ, лекарственных препаратов.
Изобретение относится к области технологии силикатов, в частности к производству минеральной ваты. .

Изобретение относится к растворимым в солевом растворе неметаллическим, аморфным, тугоплавким волокнистым материалам. .

Изобретение относится к стекловидному неорганическому волокну, которое используется в качестве теплоизоляционного или звукоизолирующего материала. .

Изобретение относится к промышленности строительных материалов, в частности, к изготовлению пористых материалов, преимущественно минераловатных плит на синтетическом связующем и может быть использовано в производства волокнистых теплоизоляционных изделий.
Изобретение относится к области производства непрерывных и шпательных минеральных волокон из расплава базальтовых горных пород с высокой прочностью, температурной и химической устойчивостью и может быть использовано в промышленности строительных материалов с тепло- и звукоизоляционными свойствами, энергетике и других областях

Изобретение относится к стекловолокну, которое используется при изготовлении тепло- или звукоизоляционного материала
Изобретение относится к упрочняющему стекловолокну, содержащему следующие компоненты в указанных ниже пределах, выраженных в мас.%: SiO2 62-63, Al2O3 10-16, CaO 6-23, MgO 1-3, Na2O+K2O+Li 2O 0-2, TiO2 0-1, B2O3 0,1 - менее 1,8, Li2O 0-0,5, ZnO 0-0,5, MnO 0-1, F 0-0,5

Изобретение относится к области искусственных минеральных ват

Изобретение относится к области искусственных минеральных ват
Изобретение относится к составу стекла, стойкого к воздействию щелочей и кислот, полученному из него армирующему стекловолокну и композитам, содержащим указанное стекловолокно

Изобретение относится к щелочноземельным силикатным волокнам
Изобретение относится к области производства фибры базальтовой, предназначенной для трехмерного упрочения и повышения в несколько раз стойкости фибробетона (по сравнению с железобетоном) к растрескиванию, изгибающим и разрывным нагрузкам, создает необходимый запас прочности и способствует сохранению целостности конструкции при сквозных трещинах, а также позволяет значительно уменьшить общий вес строительных конструкций
Наверх