Способ получения антифрикционного органоволокнистого пресс-материала

Изобретение относится к способу получения антифрикционных пресс-материалов, предназначенных для изготовления антифрикционных изделий сложных конфигураций, например подшипниковых втулок. Описывается способ получения антифрикционного органоволокнистого пресс-материала, включающий приготовление раствора эпоксидной смолы смешением эпоксидированного амина (А) с минералом H-Cu-монтмориллонитом (Б) при соотношении А:Б от 90:10 до 40:60 и органическим растворителем, добавление отвердителя - аддукта 3,3'-дихлор-4,4'-диаминодифенилметана с 3,4-эпоксициклогексиметил-3',4'-эпоксициклогек-

санкарбоксилатом и перемешивание. Далее добавляют органоволокнистый наполнитель - органическое рубленое волокно и смазку, массу перемешивают и сушат. Предложенный способ позволяет получить пресс-материал с повышенной прочностью и теплостойкостью, обеспечивающий получение из него изделий как компрессионным, так и литьевым прессованием. 2 табл.

 

Изобретение относится к способу получения антифрикционных пресс-материалов на основе органических волокон и эпоксидных связующих, предназначенных для изготовления антифрикционных изделий, сложных конфигураций, подвергаемых высоким механическим нагрузкам, например подшипниковых втулок, а также в качестве конструкционного и электроизоляционного материала в электротехнике, электронике, в самолетостроении и других отраслях.

Известен способ получения эпоксидного пресс-материала, позволяющего получать антифрикционные изделия сложной конфигурации. Указанный пресс-материал получают путем вальцевания твердой смеси эпоксидных смол с наполнителем, состоящим из рубленого стекловолокна и графита (см. Патент РФ №2307851 от 06.02.2006 г.).

Недостатками известного материала являются сравнительно невысокие прочностные показатели, обусловленные разрушением стекловолокна в процессе вальцевания до размеров 200-500 микрон, а также появление абразивных частиц стекловолокна при длительной работе антифрикционных изделий.

Наиболее близким аналогом заявленного изобретения является способ получения антифрикционного органоволокнистого пресс-материала, включающий стадии предварительного приготовления раствора эпоксидной смоляной части путем смешения эпоксидной смоляной части и органического растворителя, добавления отвердителя, пропитки полученным раствором органоволокнистого наполнителя и его сушки. Эпоксидную смоляную часть получают взаимодействием эпоксидной диановой смолы (А), бензгуанамина (Б), е-капролактама (В) и фенолоформальдегидного новолака (Г) в соотношении А:Б:В:Г от 40:10:15:35 до 81:3:8:8. В качестве отвердителя используют ароматический амин, выбранный из группы, включающей 4,4'-диаминодифенилсульфон, метафенилендиамин, 3,3'-дихлор-4,4'-диаминодифенилметан. В качестве органоволокнистого наполнителя используют ткань, содержащую полиамидные волокна (RU 2179984 C1, 27.02.2002).

Целью данного изобретения является способ получения антифрикционного волокнистого пресс-материала с высокими прочностными показателями и теплостойкостью и обеспечивающего возможность изготовления изделий любых конфигураций как компрессионным, так и литьевым прессованием, включая использование реактопластавтоматов.

Поставленная цель достигается тем, что предварительно готовят раствор эпоксидной смоляной части путем смешения эпоксидированного амина (А) с минералом H-Cu-монтмориланитом, в структуре которого содержатся атомы водорода и атомы меди (Б) в соотношении А:Б от 90:10 до 40:60, и органическим растворителем, добавляют отвердитель в виде аддукта 3,3'-дихлор-4,4'-диаминодифенилметана с 3,4-эпоксициклогексиметил-3',4'-эпоксициклогексанкарбоксилатом при стехиометрическом избытке амина 5-15, компоненты перемешивают, добавляют органоволокнистый наполнитель - органическое рубленое волокно и смазку, массу перемешивают и сушат, при этом пресс-материал содержит следующее соотношение компонентов, в мас.ч.:

вышеуказанный раствор эпоксидной смоляной части 100
вышеуказанный отвердитель 40÷120
органическое рубленое волокно 20÷200
смазка 2÷8

Пример 1.

Приготовление смоляной части

В реактор с мешалкой загружают 100 мас.ч. минерала монтмориланита (техническое название - бентонит или бентонитовая глина) и 100 мас.ч. 10% соляной кислоты. Смесь перемешивают 2 часа, при этом атомы водорода вступают в структуру монтмориланита. После этого водный раствор сливают и оставшийся продукт промывают водой до удаления ионов хлора. Полученный продукт, содержащий ионы водорода, называется Н-монтмориланит и ведет себя как кислота. Далее к полученному Н-монтмориланиту приливают 100 мас.ч. 0,5% водного раствора сульфата меди и после 1-часового перемешивания сливают водный раствор, остаток промывают водой до удаления сульфат-иона и сушат при 100°С до удаления остатков воды. Полученный минерал H-Cu-монтмориланит содержит до 0,5% атомов меди и приобретает новые свойства, превращаясь в наноматериал, действуя как ускоритель отверждения эпоксидных смол, и одновременно придает полимеру повышенную прочность, теплостойкость и улучшенные антифрикционные свойства.

Далее H-Cu-монтмориланит, содержащий ионы водорода и атомы меди, смешивают с эпоксианилиновой смолой марки ЭА (ТУ 2225-546-00203521-98, химическое название диглицидиланилин, эпоксидное число 34%) и добавляют 5% этилацетата от количества ЭА.

Смесь перемешивают в лопастном смесителе в течение 30 минут.

Получение отвердителя

В реактор с мешалкой, охлаждением и обогревом загружают 450 мас.ч. 3,3'-дихлор-4,4'-диаминодифенилметана и нагревают до расплавления (Тпл=105°С) и к нему приливают постепенно 3,4'-эпоксициклогексил-3,4'-эпоксициклогексанкарбоксилат (циклоалифатическая смола УП-632, ТУ 6-05-241-72-79) в количестве 100 мас.ч., т.е. при десятикратном стехиометрическом избытке амина. После начала реакции, проявляющейся в выделении экзотермического тепла, включают охлаждение и температуру поддерживают не выше 100°С. Спустя 60 минут полученный продукт охлаждают и переливают в металлическую тару.

Получение пресс-материала

В смеситель с эпоксидной смоляной частью и растворителем (этилацетатом) приливают отвердитель в соотношении на 100 мас.ч. смоляной части 80 мас.ч. отвердителя и после 10-минутного перемешивания добавляют 110 мас.ч. рубленого полиамидного волокна марки СВМ (ТУ 6-06-1153-78) с длиной волокон 5-10 мм и 5 мас.ч. смазки - стеарата цинка. Массу перемешивают в течение 30 мин, после чего сушат в вакуум-сушилке при 80°С до удаления растворителя.

Полученный пресс-материал прессуют при 170°С, удельном давлении 100 кг/см2 и выдержке 1 мин/мм толщины.

Примеры 2-7 осуществляют аналогично примеру 1 с изменением условий в соответствии с табл.1. Свойства пресс-материалов приведены в табл.2. Как видно из таблицы, заявляемый способ обеспечивает получение антифрикционных материалов с уникальным сочетанием технологических и эксплуатационных показателей.

Таблица 1
Условия получения пресс-материала по примерам 2-7
№ п/а Наименование параметра и применяемого компонента Величина параметра и вид компонента по примерам
2 3 4 5 6 7
1 Вид эпоксидированного амина (смола). Компонент А ЭА ЭА ЭА УП-610 (триглицидил параамино-
фенол)
ЭХД тетраглицидиламин 3,3 дихлор-4,4' диаминодифе-
нилметана
Эпоксидированный 4,4 диамицодифенил-
сульфон*
2 Содержание иона водорода и атома меди в минерале монтмориллоните (компонент Б), % H0 0,5 H0 0,1 H0 0,2 H0 0,2 H0 0,2 H0 0,2
Cu 0,8 Cu 1,5 Cu 0,1 Cu 0,1 Cu 0,1 Cu 0,1
3 Соотношение А:Б 65:35 65:35 65:35 90.10 60.40 65:35
4 Избыток амина в аддукте сверх стехиометрического количества 10 10 10 10 5 15
5 Количество отвердителя па 100 смолы (мас.ч) 80 80 80 80 120 40
6 Вид и количество органоволокна на 100 смоляной части (мас.ч) оксалон 200 полиамид 80 Высокомолекулярное волокно СВМ 110
7 Вид и количество смазки на 100 смоляной части (мас.ч.) 5 стеарата цинка 5 стеарата цинка 5 стеарата цинка 5 стеарата цинка 8 стеариновой кислоты 2 церезина (нефтепродукт)
8 Вид и количество растворителя, мас.ч. 5 этилацета 5 этилацетата 5 этилацетата 20 ацетона 10 этилцеллозольва 10 этилцеллозольва
9 Режим сушки при удалении растворителя, t°С/мин 80/60 80/60 60/60 40/30 90/30 90/30
10 Режим прессования t°С/мин, выдержки на 1 мм толщины изделия 170/1 170/1 170/1 150/2 180/1 180/3
* Получен по А.с. СССР №363719, Бюл. изобр. №4 (1973 г.)

Таблица 2
Свойства заявляемого пресс-материала по примерам 1-7
№ п/а Наименование показателя Величина показателя по примерам Прототип патент РФ №2179984
1 2 3 4 5 6 7
1 Текучесть по спирали, мм 600 800 700 650 750 900 700 Не течет
2 Возможность получения изделий сложной конфигурации Возможно получение изделий любой конфигурации компрессионным и литьевым прессованием Возможно получение плоских изделий
3 Предел прочности, МПа
- при статическом изгибе, при 20°С 350 320 340 310 440 380 420
- при статическом изгибе, при 200°С 160 170 190 180 210 200 220
4 Предел прочности, МПа
- при сжатии, при 20°С 300 250 200 310 370 410 400
- при сжатии, при 200°С 160 140 180 150 160 180 210
5 Удельная ударная вязкость, КДж/м2 210 200 215 190 180 210 200
6 Коэффициент трения (V=0,5 м/с, Р=1 МПа) 0,12 0,10 0,13 0,14 0,14 0,11 0,16

Способ получения антифрикционного органоволокнистого пресс-материала, заключающийся в том, что предварительно готовят раствор эпоксидной смоляной части путем смешения эпоксидированного амина (А) с минералом H-Cu-монтмориллонитом, в структуре которого содержатся атомы водорода и атомы меди (Б) в соотношении А:Б от 90:10 до 40:60, и органическим растворителем, добавляют отвердитель в виде аддукта 3,3'-дихлор-4,4'-диаминодифенилметана с 3,4-эпоксициклогексиметил-3',4'-эпоксициклогексанкарбоксилатом при стехиометрическом избытке амина 5-15, компоненты перемешивают, добавляют органоволокнистый наполнитель - органическое рубленое волокно и смазку, массу перемешивают и сушат, при этом пресс-материал содержит следующее соотношение компонентов, мас.ч.:

вышеуказанный раствор эпоксидной смоляной части 100
вышеуказанный отвердитель 40-120
органическое рубленое волокно 20-200
смазка 2-8



 

Похожие патенты:

Изобретение относится к антифрикционному слою для опорного элемента. .

Изобретение относится к области машиностроения и может быть использовано при изготовлении вкладышей опорного подшипника скольжения. .

Изобретение относится к подшипникам с регулировкой зазора между сегментами, составляющими втулку опоры скольжения, и может быть преимущественно использовано в различных лопастных насосах на АЭС.

Изобретение относится к области машиностроения, локомотивостроения и другим отраслям промышленности и касается моторно-осевого подшипника тягового электродвигателя локомотива и других подшипников скольжения.

Изобретение относится к области машиностроения и может быть использовано в опорных узлах скольжения. .

Изобретение относится к области машиностроения и может быть использовано в опорных узлах скольжения. .

Изобретение относится к области машиностроения и может быть использовано в узлах с подшипниками скольжения, предназначенных для работы в агрессивных средах в широком диапазоне температур и давлений, в частности в герметичных химических насосах с магнитной муфтой.

Изобретение относится к машиностроению, например к гидротурбиностроению, судостроению, в частности к узлам трения гидромашин, гребных валов. .

Изобретение относится к области машиностроения и может быть использовано в роторных машинах, к которым предъявляются повышенные требования по быстроходности и возможности многократных пусков (остановов) машины.

Изобретение относится к области производства антифрикционных материалов и изделий и может быть использовано при изготовлении высоконагруженных подшипников скольжения в машино- и судостроении, авиационной промышленности и других областях техники.

Изобретение относится к эпоксидной композиции, которая может быть использована в качестве связующего для производства композиционных материалов, а также клеевых и пропиточных составов в автомобильной, электротехнической и других отраслях промышленности.
Изобретение относится к эпоксидной композиции, предназначенной для использования в качестве связующего для стеклопластиковых труб с температурой эксплуатации до +120°С.
Изобретение относится к эпоксидной композиции, которая может быть использована в качестве связующего для стеклопластиков, пропиточных и литьевых компаундов и для изготовления различных изделий.
Изобретение относится к полимерной композиции, которая может быть использована для поглощения высокочастотной энергии в СВЧ-устройствах. .
Изобретение относится к эпоксидному связующему для получения стеклопластиков на основе армирующего наполнителя стеклоткани, стекломата, стеклоровинга и т.д., применяемых преимущественно в качестве конструкционной арматуры, работающей в условиях воздействия агрессивных сред, а также для получения высокопрочных стеклопластиков для различных отраслей машиностроения, судостроения и т.д.

Изобретение относится к связующему для армированных пластиков, которое может быть использовано в качестве строительных покрытий для защиты бетонных, железобетонных, металлических и других поверхностей от воздействия агрессивных сред и абразивного износа, а также для изготовления литьевых изделий общетехнического назначения, используемых в химически агрессивных средах.
Изобретение относится к полимерной композиции для фиксации радионуклидов, в том числе 133Ва, 134Eu и 36Cl, которая может быть использована в ядерной технике с целью недопущения их выхода в окружающую среду с последующим ее заражением.
Изобретение относится к области ракетной техники и касается разработки эпоксидной литьевой композиции для бронирования вкладных зарядов диаметром от 300 до 700 мм из смесевого твердого ракетного топлива методом заливки, работающей в широком диапазоне температур.
Изобретение относится к композиции на основе эпоксидной смолы, предназначенной для герметизации полупроводниковых приборов. .

Изобретение относится к области получения эпоксидных связующих для производства композиционных материалов, применяемых в электротехнической, авиационной, автомобильной, аэрокосмической, железнодорожной и других отраслях промышленности, а также применяемых в качестве пропиточного состава электроэлементов, клеев, покрытий.
Наверх