Способ определения токсигенности бактерий corynebacterium diphtheria

Изобретение относится к биотехнологии. Способ осуществляют путем нанесения на питательную среду дифтерийного антитоксина. Затем осуществляют посев культуры испытуемого штамма, при этом на культуру бактерий перед посевом воздействуют низкоинтенсивным лазерным излучением (НИЛИ) с длиной волны λ=650…670 нм плотностью мощности излучения на поверхности колоний бактерий 2,5…3,5 мВт/см2 в течение 4,5…5,5 минут. 1 табл.

 

Изобретение относится к области медицинской микробиологии и может быть использовано для микробиологической диагностики дифтерии

Известно, что токсигенность возбудителя дифтерии является ведущим патогенным свойством, определяющим развитие дифтерийной инфекции [3]. Поэтому основным признаком в бактериологической диагностике дифтерии является определение токсина [4, 5, 7, 8]. Однако не все бактерии, имеющие ген токсигенности, продуцируют токсин in vitro. По данным разных авторов, подобные штаммы с «молчащим» геном встречаются в 30% случаев [6]. При исследовании методом полимеразной цепной реакции у них определяется участок А фрагмента tox-гена, но продукции токсина не происходит [1, 2]. У части таких штаммов возможно восстановление токсинопродукции в результате применения обогащенных жидких питательных сред и/или лабораторных животных.

Наиболее близким по сущности к заявляемому изобретению относится способ, включающий пассирование (не менее 3-х раз) коринебактерий дифтерии, содержащих «молчащий ген», в жидкой питательной среде (среда 199, содержащая 20% сыворотки крупного рогатого скота), или парентеральное заражение чувствительных лабораторных животных (морских свинок) с последующим выделением из органов и тканей коринебактерий и их исследование на продукцию токсина [4].

Недостатком указанного способа является длительность процедуры (от 6 до 10 суток), значительные материальные затраты, трудоемкость.

Изобретение направлено на создание способа определения токсигенности C.diphtheriae, ускоряющего выявление токсинпродуцирующих C.diphtheriae и повышающего достоверность результатов определения токсигенных бактерий.

Изобретение реализуется следующим образом. Коринебактерии засевают на плотную питательную среду (Клауберг 2), выращивают на ней в течение 1 суток при температуре +37°С.

Пример 1. На выросшую культуру с открытой крышкой чашки Петри воздействуют излучением с длиной волны λ=650 нм плотностью мощности излучения на поверхности колоний бактерий 2 мВт/см2 в течение 4 минут.

Примеры реализации изобретения при других параметрах излучения и времени представлены в таблице 1.

Для этого может быть использован лазерный прибор для микробиологических исследований «Барва ЛПМИ - 01», выполненный Харьковским НИИ лазерной биологии и лазерной медицины, или другой прибор с указанными параметрами излучения.

После воздействия на штаммы НИЛИ изучаем токсинопродукцию контрольных и экспериментальных штаммов в Elek-тесте [5]. В результате воздействия НИЛИ на штаммы, содержащие «молчащий» ген, у 45% культур происходит активация токсинопродукции и, как следствие, подтверждение токсигенности штамма в общепринятом Elek-тесте, а также в других методах определения токсигенности (РНГА, ИФА, ICS-тесте).

Из представленных результатов исследования видно, что при заявленных параметрах достигается высокая эффективность метода определения токсигенности (в 2-3 раза превышает показатели прототипа), даже среди слаботоксигенных штаммов.

Источники информации

1. Безруков В.М., Шипулин Г.А., Федоров Н.А. и др. Полимеразная цепная реакция в диагностике бактериальных инфекций. // Журн. микробиол. Приложение. - 1997. - С.243.

2. Ковган А.А., Жданов В.М. Сравнительный анализ ДНК фагов C.diphtheriae и клонирование гена, детерминирующего синтез дифтерийного токсина. // Журн. 1994. - №3. - с.39-43.

3. Коротяев А.И., Бабичев С.А. Медицинская микробиология, иммунология и вирусология. // С.-Петербург: «Специальная литература». - 1998. - С.592.

4. Методические указания МЗ РФ «Лабораторная диагностика дифтерийной инфекции» (МУ 4.2.698-98).

5. Приказ МЗ СССР №450 «О мерах по предупреждению заболеваемости дифтерией».

6. Ценева Г.Я., Березина Л.А., Вуопио-Варкила Я. и др. Микробиологические и диагностические аспекты изучения дифтерийной инфекции на Северо-Западе России // Материалы 2-й межд. конф., посвященной 75-летию института им. Пастера «Идеи Пастера в борьбе с инфекциями», СПб., 1998. С.30.

7. Holmes R.K. Biology and molecular epidemiology of diphtheria toxin and the tox gene (Review). // J. Inf. Dis. 181 Suppl. 1: S 156-67. 2000 Feb.

8. Tseneva G. Pathogenic properties of Corynebacterium diphteriae and methods of detection. // Proceedings of the First Internacional meeting of the European Laboratory Working Group of Diphtheria. London. UK. 1994. P.21.

Таблица 1
Зависимость количества токсинопродуцирующих колоний от плотности мощности излучения на поверхности колоний бактерий и времени воздействия НИЛИ
№ п/п λ (нм) Плотность мощности излучения на поверхности колоний бактерий (мВт/см2) Количество колоний C.diphtheriae, продуцирующих токсин при разной экпозиции НИЛИ
4 мин 4,5 мин 5 мин 5,5 мин 6 мин Прототип
1 650 2 11 12 13 14 14 11
2 2,5 10 12 15 13 13 11
3 3 12 15 17 15 14 12
4 3,5 14 18 17 13 10 11
5 4 13 16 15 15 14 11
6 660 2 16 17 19 18 21 10
7 2,5 20 22 26 25 17 10
8 3 25 30 36 33 29 11
9 3,5 24 26 30 25 23 11
10 4 21 22 28 25 26 12
11 670 2 19 20 23 22 17 10
12 2,5 18 21 22 20 14 11
13 3 17 19 23 18 13 11
14 3,5 20 22 21 23 16 11
15 4 16 18 23 21 15 11

Способ определения токсигенности бактерий Corynebacterium diphtheria, предусматривающий нанесение на питательную среду дифтерийного антитоксина и посев культуры испытуемого штамма, отличающийся тем, что на культуру бактерий перед посевом воздействуют низкоинтенсивным лазерным излучением (НИЛИ) с длиной волны λ=650…670 нм, плотностью мощности излучения на поверхности колоний бактерий 2,5…3,5 мВт/см2 в течение 4,5…5,5 мин.



 

Похожие патенты:

Изобретение относится к области оценки качества продуктов живой и неживой природы, а именно биологической оценки качества продуктов питания человека, кормов для животных, пищевых добавок и иных веществ, контактирующих с организмом человека, природных и сточных вод, вод рыбохозяйственных водоемов, почв и грунтов.

Изобретение относится к медицинской и ветеринарной микробиологии. .
Изобретение относится к биотехнологии и генной инженерии. .

Изобретение относится к медицине и биологии, точнее к способу определения пригодности поджелудочной железы как источника терапевтически применимых островков. .
Изобретение относится к области медицины, а именно к медицинской токсикологии, микробиологии, и касается способа оценки клинической значимости клостридий в условиях полимикробной инфекции.

Изобретение относится к средствам контроля качества продуктов живой и неживой природы и может быть использовано для оценки безопасности пищевых и кормовых продуктов, природных и сточных вод, грунтов, почвы, разработки ПДК загрязняющих веществ, в том числе продуктов добычи и переработки нефти и т.д.
Изобретение относится к биотехнологии, а именно к штаммам бактерий для биотестирования токсичности объектов окружающей среды, и может быть использовано при проведении эколого-токсических исследований, при мониторинге водных экосистем.

Изобретение относится к области токсикологии и может быть использовано для определения токсичности воздуха. .

Изобретение относится к области биотехнологии и экологии. .

Изобретение относится к санитарной микробиологии и может быть использовано при оценке качества (интегральной биотоксичности) питьевых минеральных вод с использованием жизнеспособных люминесцирующих (спонтанно светящихся) бактерий

Изобретение относится к области генетической инженерии и медицины
Изобретение относится к медицинской микробиологии и может быть использовано для ускоренного определения количества живых клеток во взвесях дрожжеподобных грибов
Изобретение относится к области медицины и микробиологии и представляет собой способ идентификации аутоштаммов микроорганизмов нормальной микрофлоры

Изобретение относится к биотехнологии, в частности к клеточной биоинженерии, а именно к клеточным технологиям скрининга молекулярных мишеней

Изобретение относится к микробиологии, в частности к способам измерения, использующим жизнеспособные микроорганизмы, содержащие люциферазу, и может быть использовано для экспрессной оценки загрязнения атмосферного воздуха токсичными веществами, например сероводородом, ароматическими углеводородами, окислами азота, металлорганическими соединениями
Изобретение относится к области медицины и касается способа диагностики хронического инфекционного - воспалительного поражения сосудов ЦНС, ассоциированного с хламидийной инфекцией
Наверх