Способ фосфорилирования технических лигнинов и их производных

Настоящее изобретение относится к способу фосфорилирования технических лигнинов и их производных и может быть применено для получения инсектицидов. Предложенный способ состоит в том, что воздушно-сухие лигнаты натрия или калия последовательно обрабатывают тиотреххлористым фосфором в течение 5÷30 мин при интенсивном перемешивании с одновременным измельчением в виброреакторе при 20÷80°С без растворителя, а затем алкоголятами щелочных металлов при интенсивном перемешивании с одновременным измельчением в течение 10÷40 мин при этой же температуре, при мольном соотношении фосфорилирующих реагентов, равном 1:1 в расчете на 1 моль ОН-групп лигнина. Технический результат - разработка нового способа фосфорилирования лигнинов. 6 табл.

 

Изобретение относится к области химической технологии древесины и предназначено для получения эфиров О,О-диалкилтиофосфорных кислот лигнинов и их производных, содержащих в своем составе электроноакцепторные атомы или группы атомов (-NO2; -NO2 и -Cl; -CN и др.), которые могут быть использованы в качестве химических средств защиты растений (инсектицидов).

Ближайшими аналогами O,O-диалкилтиофосфорных кислот функциональных производных лигнинов являются O,O-диэтил-O-(n-нитрофенил)тиофосфат (паратион, Е-605, фолидол, ниран, тиофос и др.), O,O-диметил-O-(n-нитрофенил)тиофосфат (метилпаратион, метацид, дальф и др.), O,O-диметил-O-(3-хлор-4-нитрофенил)тиофосфат (хлортион, байер 22/190) [Г.Шрадер. Новые фосфорорганические инсектициды / Пер. с нем. под ред. Н.Н.Мельникова. М., 1965, С.255-309].

Для получения, например, O,O-диэтил-O-(n-нитрофенил)тиофосфата (тиофоса) используют следующую методику [Патент ФРГ №814297. Farbenfabriken Bayer / Schrader G. Опубл. 1948]. К 300 мл метилэтилкетона добавляют 80,5 г (0,5 моля) n-нитрофенолята натрия. При перемешивании и температуре 50°С добавляют 95 г O,O-диэтилхлортиофосфата. Реакционную смесь нагревают 2 ч при температуре 60°С, а затем выливают в 600 мл воды. Отделившееся масло извлекают 400 мл бензола. Бензольный экстракт отделяют от воды и промывают 1 н. раствором едкого натра до тех пор, пока щелочной раствор не перестанет окрашиваться в желтый цвет. Бензольный слой отделяют и сушат сульфатом натрия. После отгонки растворителя получают 131 г неочищенного тиофоса. Выход 90% от теоретического.

Известны способы получения эфиров O,O-диалкилтиофосфорных кислот и производных лигнина, в которых функциональное производное лигнина растворяют в водном растворе щелочи, или воздушно-сухую натриевую соль функционального производного лигнина суспендируют в органическом растворителе, смешивают с катализатором и хлорангидридом O,O-диалкилтиофосфорной кислоты. Реакцию проводят в течение 1÷2,5 ч при температуре 60÷80°С. Конечный продукт выделяют из реакционной массы путем ее подкисления. При этом выделяют мелкодисперсный осадок, который отделяют от маточного раствора, промывают и высушивают [Б.В.Тронов, Л.А.Першина, В.М.Морозова и др. Получение тиофосфорнокислых производных гидролизного лигнина и их инсектицидное действие // Гидролизная и лесохимическая промышленность, 1961, №5, С.12-15].

Основными недостатками известных способов является: длительность процесса до 2,5 ч, повышенная температура процесса (60÷80°С) и необходимость использования и регенерации органических растворителей.

Наиболее близким по назначению и технической сущности к заявляемому изобретению и выбранным в качестве прототипа является способ фосфорилирования лигнина и его производных О-метил-О-этилхлортиофосфатом, в результате которого получается О-метил-О-этил-О-лигнотиофосфат (лигнотиофос) [Патент РФ №2194710, опубл. 20.12.2002. БИ №35]. Для его получения воздушно-сухие лигнаты натрия или калия обрабатывают хлорангидридом O,O-диалкилтиофосфорной кислоты. При этом компоненты реакционной смеси берутся в весовом соотношении, равном теоретически рассчитанному, исходя из содержания гидроксильных групп в лигнине, и подвергаются интенсивному перемешиванию с одновременным измельчением в течение 5÷30 мин при 20÷80°С без растворителя.

Недостатком этого способа является то, что реакцию проводят с использованием хлорангидрида О,О-диалкилтиофосфорной кислоты. Его получение сопряжено со значительными временными и материальными затратами с использованием металлического натрия и органических растворителей. Например, получение O,O-диэтилхлортиофосфата по одному из описанных в литературе методу [Шрадер Г. Успехи химии, 1953, т.22, С.712] осуществляется при действии на тиотреххлористый фосфор алкоголята натрия, приготовленного из абсолютного спирта и металлического натрия, при температуре 5÷10°С в среде бензола. Продолжительность реакции 6÷8 ч. Полученный O,O-диэтилхлортиофосфат выделяется из реакционной массы экстракцией бензолом.

В предлагаемом изобретении указанный недостаток устраняются следующим образом: воздушно-сухой препарат лигнина, полученный при смешении функционального производного лигнина с гидроксидом натрия или калия, смешивают с тиотреххлористым фосфором и в отсутствие растворителя подвергают интенсивному перемешиванию с одновременным измельчением в виброреакторе в течение 5÷30 мин при температуре 20÷80°С. Последующее взаимодействие образовавшегося дихлорида лигнотиофосфорной кислоты при интенсивном перемешивании с измельчением в течение 10÷40 мин при этой же температуре с алкоголятами щелочных металлов, полученными путем смешения спирта с гидроксидом щелочного металла, приводит к образованию целевого продукта (лигнотиофоса).

Сущность заявляемого изобретения заключается в том, что исходные воздушно-сухие лигнаты натрия или калия последовательно обрабатывают сначала тиотреххлористым фосфором при интенсивном перемешивании с одновременным измельчением в виброреакторе при температуре 20÷80°С в течение 5÷30 мин в отсутствие растворителя, а затем алкоголятами щелочных металлов при интенсивном перемешивании с одновременным измельчением в течение 10÷40 мин при этой же температуре, что приводит к образованию продукта, обладающего физиологической инсектицидной активностью (лигнотиофоса).

Наибольшей инсектицидной активностью обладают те эфиры, которые имеют в своем составе электроноакцепторные заместители. Состав полученных продуктов идентифицируют по данным анализа на содержание серы (или фосфора) и по ИК-спектрам.

Осуществление изобретения достигается следующим образом. Навеску воздушно-сухого лигната натрия (или калия) смешивают с теоретически расчетным количеством тиотреххлористого фосфора. Реакционную смесь помещают в виброреактор и подвергают интенсивному перемешиванию с одновременным измельчением в течение 5÷30 мин при отсутствии растворителя. Температура реакции 20÷80°С. По истечении указанного времени к реакционной массе небольшими порциями добавляют алкоголят щелочного металла (при мольном соотношении фосфорилирующих реагентов, равном 1:1 в расчете на 1 моль ОН-групп лигнина). Интенсивное перемешивание и одновременное измельчение продолжают еще 10÷40 мин при этой же температуре. По истечении указанного времени реакционную смесь переносят на стеклянный фильтр и промывают водой со льдом от хлорида натрия. Высушенный продукт анализируют на содержание серы.

Примеры 1-6. Получение дихлоридов лигнотиофосфорных кислот. Навеску воздушно-сухого лигната натрия и рассчитанное по содержанию гидроксильных групп в исходном препарате лигнина количество тиотреххлористого фосфора (1 моль на моль ОН-групп лигнина) интенсивно перемешивают с одновременным измельчением в виброреакторе в течение 5÷30 мин при температуре 20÷100°С. По истечении указанного времени реакционную смесь переносят на стеклянный фильтр и промывают водой со льдом от хлорида натрия. Высушенный продукт анализируют на содержание хлора и серы (табл.1).

Примеры 7-11. Получение O,O-диэтил-О-нитролигнотиофосфата (лигнотиофоса). К навеске воздушно-сухого дихлорида лигнотиофосфорной кислоты, полученного в примерах 1-6, небольшими порциями добавляют спиртовой раствор расчетного количества этилата натрия (1 моль на моль ОН-групп лигнина) и интенсивно перемешивают с одновременным измельчением в виброреакторе в течение 30 мин при температуре 40°С. По истечении указанного времени реакционную смесь переносят на стеклянный фильтр и промывают водой со льдом от хлорида натрия. Высушенный продукт анализируют на содержание серы (табл.2).

В таблицах 3-6 приведены примеры получения O,O-диэтил-О-нитролигнотиофосфата (лигнотиофоса) на основе полученного дихлорида нитролигнотиофосфорной кислоты при различных условиях.

Примеры 12-16. Влияние температуры синтеза на свойства O,O-диэтил-О-нитролигнотиофосфата (лигнотиофоса). К навеске воздушно-сухого дихлорида нитролигнотиофосфорной кислоты небольшими порциями добавляют спиртовой раствор расчетного количества этилата натрия и интенсивно перемешивают с одновременным измельчением в виброреакторе в течение 30 мин при температуре 20÷100°С при мольном соотношении OH:PSCl3:C2H5ONa, равном 1:1:1. По истечении указанного времени реакционную смесь переносят на стеклянный фильтр и промывают водой со льдом от хлорида натрия. Высушенный продукт анализируют на содержание серы (табл.3).

Примеры 17-22. Влияние продолжительности синтеза на свойства O,O-диэтил-O-нитролигнотиофосфата (лигнотиофоса). К навеске воздушно-сухого дихлорида нитролигнотиофосфорной кислоты небольшими порциями добавляют спиртовой раствор расчетного количества этилата натрия и интенсивно перемешивают с одновременным измельчением в виброреакторе в течение 5÷40 мин при температуре 40°С при мольном соотношении OH:PSCl3:C2H5ONa, равном 1:1:1. По истечении указанного времени реакционную смесь переносят на стеклянный фильтр и промывают водой со льдом от хлорида натрия. Высушенный продукт анализируют на содержание серы (табл.4).

Примеры 23-27. Влияние количества PSCl3 на свойства O,O-диэтил-О-нитролигнотиофосфата (лигнотиофоса). К навеске воздушно-сухого нитролигната небольшими порциями добавляют тиотреххлористый фосфор при эквимольном соотношении с количеством гидроксильных групп в нитролигнине и с избытком от 10 до 100%. После добавления всего количества тиотреххлористого фосфора к реакционной смеси добавляют расчетное количество этилата натрия. Смесь интенсивно перемешивают с одновременным измельчением в виброреакторе 30 мин при температуре 40°С. По истечении указанного времени реакционную смесь переносят на стеклянный фильтр и промывают водой со льдом от хлорида натрия. Высушенный продукт анализируют на содержание серы (табл.5).

Примеры 28-32. Влияние количества C2H5ONa на свойства O,O-диэтил-О-нитролигнотиофосфата (лигнотиофоса). К навеске воздушно-сухого дихлорида нитролигнотиофосфорной кислоты, полученного из нитролигната натрия и тиотреххлористого фосфора (при соотношении 1:1), небольшими порциями добавляют спиртовой раствор заданного количества этилата натрия и интенсивно перемешивают с одновременным измельчением в виброреакторе в течение 30 мин при температуре 40°С. По истечении указанного времени реакционную смесь переносят на стеклянный фильтр и промывают водой со льдом от хлорида натрия. Высушенный продукт анализируют на содержание серы (табл.6).

Таким образом, оптимальные условия получения лигнотиофоса: продолжительность обработки воздушно-сухих лигнатов тиотреххлористым фосфором при интенсивном перемешивании с измельчением в виброреакторе составляет 5÷30 мин при 20÷80°С без растворителя, продолжительность обработки полученных продуктов алкоголятами щелочных металлов при интенсивном перемешивании с одновременным измельчением составляет 10÷40 мин при этой же температуре, мольное соотношение фосфорилирующих реагентов составляет 1:1 в расчете на 1 моль ОН-групп лигнина.

Таблица 1
Влияние условий синтеза на свойства дихлоридов лигнотиофосфорных кислот (температура 40°С, продолжительность синтеза 30 мин)
Пример Исходный лигнин Количество исходных реагентов Данные анализа
Исходные лигнины Продукты реакции
Лигнат натрия, г PSCl3, г ОН, % N,% Сl, % S,% Сl, %
1 Сернокислотный гидролизный 50,0 26,0 5,2 - - 3,2 5,8
2 Сернокислотный гидролизный нитро- 19,6 13,5 6,9 3,0 - 7,5 14,2
3 Сернокислотный гидролизный хлор- 17,3 9,2 5,3 - 21,7 3,0 19,2
4 Сернокислотный гидролизный хлорнитро- 50,8 30,0 6,1 3,6 11,0 6,6 18,5
6 Сернокислотный гидролизный хлопковой шелухи нитро- 36,8 31,0 7,1 3,9 - 7,8 17,5

Таблица 3
Влияние температуры синтеза на свойства лигнотиофоса (продолжительность синтеза 30 мин, мольное соотношение OH:PSCl3:C2H5ONa - 1:1:1, количество нитролигната натрия 20 г)
Пример Температура синтеза, °С Свойства продукта
Содержание серы, % Инсектицидная активность
12 100 7,7 +
13 80 8,1 +
14 60 7,8 +
15 40 7,8 +
16 20 7,2 +

Таблица 4
Влияние продолжительности синтеза на свойства лигнотиофоса (мольное соотношение OH:PSCl3:C2H5ONa - 1:1:1, температура 40°С)
Условия синтеза Свойства продукта
Пример Продолжительность, мин Количество нитролигната натрия, г Содержание серы, % Инсектицидная активность
17 5 20,0 5,0 +
18 10 40,0 5,5 +
19 15 20,0 6,8 +
20 20 20,0 7,2 +
21 30 20,0 7,5 +
22 40 10,0 7,3 +

Таблица 5
Влияние количества PSCl3 на свойства лигнотиофоса (температура 40°С; продолжительность синтеза 30 мин, количество лигната натрия 10,0 г)
Пример Мольное соотношение OH:PSCl3:C2H5ONa Свойства продукта
Содержание серы, % Инсектицидная активность
23 1:1,1:1 7,5 +
24 1:1,2:1 7,8 +
25 1:1,3:1 7,7 +
26 1:1,5:1 7,5 +
27 1:2,0:1 7,0 +

Таблица 6
Влияние количества C2H5ONa на свойства лигнотиофоса (температура 40°С, продолжительность синтеза 30 мин, количество лигната натрия 10,0 г)
Пример Свойства продукта
Мольное соотношение OH:PSCl3:C2H5ONa Содержание серы, % Инсектицидная активность
28 1:1:1,1 7,0 +
29 1:1:1,2 7,2 +
30 1:1:1,3 7,5 +
31 1:1:1,5 7,5 +
32 1:1:2,0 7,9 +

Способ фосфорилирования технических лигнинов и их производных, заключающийся в том, что воздушно-сухие лигнаты натрия или калия обрабатывают фосфорилирующими реагентами, отличающийся тем, что исходные лигнаты последовательно обрабатывают тиотреххлористым фосфором в течение 5÷30 мин при интенсивном перемешивании с одновременным измельчением в виброреакторе при 20÷80°С без растворителя, а затем алкоголятами щелочных металлов при интенсивном перемешивании с одновременным измельчением в течение 10÷40 мин при этой же температуре, при мольном соотношении фосфорилирующих реагентов, равном 1:1 в расчете на 1 моль ОН-групп лигнина.



 

Похожие патенты:

Изобретение относится к целлюлозно-бумажной промышленности и может быть использовано при переработке отработанных щелоков от сульфатного и натронного способов варки целлюлозы.
Изобретение относится к области химической переработки древесины и может быть использовано для получения азотсодержащих удобрений и сорбентов на основе лигноуглеводного сырья.

Изобретение относится к химии высокомолекулярных соединений и химии древесины, а именно к получению водорастворимого лигнина, биополимера растительного происхождения полифенольной природы.
Изобретение относится к области химической технологии и предназначено для получения натриевых солей сернокислых эфиров лигноуглеводных материалов, и могут быть использованы в качестве химических добавок для регулирования свойств промывочных жидкостей при бурении нефтяных и газовых скважин.
Изобретение относится к области химической переработки древесины и может быть использовано для получения азотсодержащих удобрений и сорбентов на основе лигноуглеводного сырья.

Изобретение относится к химической переработке лигноцеллюлозных материалов и может быть использовано для получения азотсодержащих органоминеральных удобрений пролонгированного действия на основе лигноуглеводных растительных материалов.

Изобретение относится к гидрокарбонатно-магний-натриевому конденсату, который обладает иммуномодулирующим, противовоспалительным, антимикробным и бактериостатическим действием и может быть использован при лечении целого ряда заболеваний опорно-двигательного аппарата, воспалительных заболеваний органов малого таза, таких как простатит, гинекологические заболевания, с сопутствующими заболеваниями сердечно-сосудистой системы.

Изобретение относится к способу получения эфиров O,O-диалкилтиофосфорных кислот лигнинов и их производных, которые могут быть использованы в качестве химических средств защиты растений.

Изобретение относится к способу кислотного гидролиза лигноцеллюлозного материала, такого, как древесина, солома, овощи и т.д., для получения сахаров и лигнина, а также к гидролизному реактору для осуществления указанного способа.

Изобретение относится к способу утилизации хлорорганических отходов химических производств путем их конденсации в мягких условиях в присутствии полисульфида натрия, получаемого по реакции сульфида натрия с серой и NaOH, при нагревании до температуры 60-95°С в течение 3-4 часов с гидролизным лигнином, предварительно подвергнутым активированию путем одно- или многократного хлорирования хлорной водой, содержащей 7,0-14,0 активного хлора на 1 дм 3 воды, с последующим подкислением реакционной среды и выделения продукта конденсации фильтрованием

Изобретение относится к биотехнологии

Изобретение относится к способам определения лигнина в целлюлозных полуфабрикатах

Изобретение относится к антипиренам, а также к способам их получения и применения
Изобретение относится к химической промышленности и может быть использовано для получения целлюлозы и лигнина из целлюлозосодержащего сырья
Изобретение относится к химической технологии, а именно к способу получения природного термопластичного полимера (варианты). При осуществлении способа (вариант 1) в качестве исходного материала используют гидротропный лигнин, полученный из мискантуса, который смешивают с водой. Гидролиз ведут при атмосферном давлении, осуществляют нагрев смеси до температуры кипения воды и выдержку в течение 5-60 мин. По окончании выдержки отбирают твердую фазу, сушат ее, обрабатывают ацетоном при комнатной температуре. После чего отделяют твердую фазу, из фильтрата удаляют ацетон при комнатной температуре до получения термопластичного полимера. При осуществлении способа (вариант 2) в качестве исходного материала используют измельченный мискантус, который смешивают с водой. Гидролиз ведут при повышенном давлении, осуществляют нагрев смеси до температуры 180-190°C и выдержку в течение 5-60 мин. По окончании выдержки реакционную смесь охлаждают до комнатной температуры, отбирают твердую фазу, промывают водой до бесцветных промывных вод, подвергают ее сушке при температуре 100-110°C, затем обрабатывают ацетоном при кипении в течение 30-60 мин. После чего отделяют твердую фазу, из фильтрата удаляют ацетон при комнатной температуре. Полученный промежуточный продукт обрабатывают ацетоном при комнатной температуре, отделяют твердую фазу, из фильтрата удаляют ацетон при комнатной температуре до получения термопластичного полимера. Каждый вариант изобретения позволяет повысить экологичность, технологическую целесообразность, эксплуатационные удобства способа получения целевого продукта, растворимого в органическом растворителе и имеющего пониженную температуру размягчения. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к получению лигнина из лигноцеллюлозной биомассы, а также к снижению засорения лигнином технологического оборудования при переработке лигноцеллюлозной биомассы. Осуществляют подачу лигноцеллюлозной биомассы при первом давлении и первой температуре. Биомасса включает первую твердую фракцию, включающую нерастворимый лигнин, и первую жидкую фракцию, включающую растворимые C6 сахариды, и растворимый лигнин. Перед указанной стадийной подачей из биомассы удаляют по меньшей мере часть C6 сахаридов фракционированием. Понижают первое давление биомассы до второго давления при практически одновременном понижении первой температуры биомассы до второй температуры. Осуществляют практически одновременное понижение второго давления и второй температуры до третьего давления и третьей температуры для осаждения растворимого лигнина в первой жидкой фракции. Образуется смесь, включающая вторую твердую фракцию, включающую нерастворимый лигнин, и осажденный лигнин, а также вторую жидкую фракцию, включающую растворимые С6 сахариды. Изобретение обеспечивает получение продукта лигнина с частицами небольшого размера для повышения эффективности сгорания и для предотвращения типичных проблем засорения оборудования и с повышением степени регенерации энергии. 2 н. и 27 з.п. ф-лы, 1 ил, 1 табл, 1 пр.
Изобретение относится к способу модификации гидролизного лигнина путем обработки азотной кислотой. При этом обработку проводят в водно-органосольвентной среде. Способ позволяет повысить степень растворения гидролизного лигнина и сократить продолжительность обработки. 1 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к переработке растительной биомассы, в частности древесных опилок, стружки, корней, веток и других растительных фрагментов, разделением на целлюлозную, лигниновую и низкомолекулярную фракции. Способ комплексной переработки растительной биомассы включает гидротермомеханическую обработку деструктированной растительной биомассы в жидкой среде и разделение полученной пульпы на целевые продукты в виде отдельных фракций, способ отличается тем, что на первом этапе пульпу, полученную смешением воды и растительных отходов, обрабатывают путем механического воздействия в установке, вызывающего саморазогрев компонентов пульпы, на втором этапе после обработки пульпы при температуре саморазогрева 40±5°С часть жидкой фракции отводят из пульпы, на третьем этапе добавляют воду и повторяют гидротермомеханическую обработку, обеспечивая саморазогрев смеси до 120±5°С или гидротермомеханическую обработку проводят при температуре не выше 200°С за счет вышеуказанного саморазогрева и дополнительного нагрева, в процессе последующего охлаждения смеси выделяют - твердофазную диспергированную в пульпе целлюлозную фракцию при понижении температуры пульпы до 100±5°С, - лигниновую фракцию, осаждаемую при понижении температуры пульпы до 40±5°С, - жидкую фракцию в виде смеси воды и низкомолекулярных органических и неорганических соединений, которые растворимы в воде и/или осаждаемы при температурах ниже 40±5°С, а гидротермомеханическую обработку проводят в воде при соотношении вода/биомасса от 20:80 до 80:20.Технический результат - способ характеризуется экологичностью, высокой степенью извлечения целевых продуктов, в результате получают фракции, пригодные для дальнейшего использования. 3 з.п. ф-лы, 5 табл., 4 пр.
Наверх