Жаропрочный порошковый никелевый сплав

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. Может использоваться в газотурбинных двигателях для изготовления тяжелонагруженных деталей, работающих при повышенных температурах. Жаропрочный порошковый никелевый сплав, содержит, мас.%: углерод 0,07-0,12; хром 10,0-12,0; кобальт 13,0-15,0; вольфрам 4,6-5,6; молибден 2,7-3,5; титан 2,5-3,5; алюминий 3,7-4,4; ниобий 3,1-3,8; гафний 0,05-0,2; бор 0,005-0,05; цирконий 0,001-0,05; магний 0,001-0,05; церий 0,001-0,05; железо 0,01-1,0; марганец 0,001-0,5; кремний 0,001-0,5; никель - остальное. Сплав обладает высокими прочностью, жаропрочностью, сопротивлением МЦУ при снижении скорости распространения усталостной трещины при рабочих температурах. 1 табл.

 

Предлагаемое изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в газотурбинных двигателях для изготовления тяжелонагруженных деталей, работающих при повышенных температурах.

Известен жаропрочный порошковый никелевый сплав, предназначенный для деталей газовых турбин, мас.%:

Углерод 0,02-0,10
Хром 8,0-10,0
Вольфрам 5,2-5,9
Молибден 3,6-4,3
Титан 1,5-3,4
Алюминий 4,3-5,3
Ниобий 1,0-2,0
Гафний 0,1-0,4
Бор 0,001-0,05
Цирконий 0,001-0,05
Магний 0,001-0,08
Церий 0,001-0,06
Никель остальное

(Патент РФ 2131943, С22С 19/05, 1999 год).

Недостатком этого сплава являются низкие характеристики прочности, жаропрочности и чувствительность сплава к концентраторам напряжений при рабочих температурах, что существенно снижает ресурс работы изделия и его надежность.

Известен жаропрочный порошковый сплав на основе никеля, мас.%:

Углерод 0,02-0,08
Хром 8,0-11,0
Кобальт 14,0-18,0
Вольфрам 4,5-5,9
Молибден 3,0-5,5
Титан 1,5-3,0
Алюминий 4,5-6,0
Ниобий 2,0-3,5
Гафний 0,2-1,5
Бор 0,01-0,035
Цирконий 0,01-0,1
Магний 0,005-0,1
Церий 0,01-0,06
Никель остальное

(патент РФ 2160789, С22С 19/05, 2000 год) - прототип.

Недостатком этого сплава являются низкая прочность (σВ, σ0,2), что увеличивает удельный вес изделия, низкая жаропрочность (σ100), что уменьшает ресурс работы, а также низкое сопротивление МЦУ (σN=104) и высокая скорость распространения усталостной трещины (СРТУ) при рабочих температурах, что уменьшает эксплуатационную надежность.

Предлагается жаропрочный порошковый никелевый сплав, содержащий компоненты в следующем соотношении, мас.%:

Углерод 0,07-0,12
Хром 10,0-12,0
Кобальт 13,0-15,0
Вольфрам 4,6-5,6
Молибден 2,7-3,5
Титан 2,5-3,5
Алюминий 3,7-4,4
Ниобий 3,1-3,8
Гафний 0,05-0,2
Бор 0,005-0,05
Цирконий 0,001-0,05
Магний 0,001-0,05
Церий 0,001-0,05
Железо 0,01-1,0
Марганец 0,001-0,5
Кремний 0,001-0,5
Никель остальное

Предлагаемый сплав отличается от прототипа тем, что он дополнительно содержит железо, марганец и кремний при следующем соотношении компонентов, мас.%:

Углерод 0,07-0,12
Хром 10,0-12,0
Кобальт 13,0-15,0
Вольфрам 4,6-5,6
Молибден 2,7-3,5
Титан 2,5-3,5
Алюминий 3,7-4,4
Ниобий 3,1-3,8
Гафний 0,05-0,2
Бор 0,005-0,05
Цирконий 0,001-6,05
Магний 0,001-0,05
Церий 0,001-0,05
Железо 0,01-1,0
Марганец 0,001-0,5
Кремний 0,001-0,5
Никель остальное

Технический результат - повышение характеристик прочности, жаропрочности и сопротивления МЦУ при снижении скорости распространения усталостной трещины при рабочих температурах и, как следствие, увеличение ресурса и надежности двигателя и уменьшение его удельного веса по отношению к общему весу самолета.

Это достигается тем, что предлагаемый состав порошкового сплава обеспечивает в процессе распыления получение дисперсного порошка стойкой микроструктурой без внутренних пор и, в результате, позволяет прессовать из него плотные заготовки с однородной мелкозернистой структурой, что в свою очередь повышает прочность, жаропрочность и сопротивление МЦУ и снижает скорость распространения усталостной трещины. Все это приводит к увеличению ресурса и надежности двигателя и уменьшению его удельного веса.

Пример

Методом порошковой металлургии был изготовлен и опробован сплав предлагаемого состава, мас.%:

Углерод 0,10
Хром 11,0
Кобальт 14,0
Вольфрам 5,0
Молибден 3,0
Титан 2,8
Алюминий 4,0
Ниобий 3,4
Гафний 0,1
Бор 0,015
Цирконий 0,01
Магний 0,02
Церий 0,01
Железо 0,5
Марганец 0,3
Кремний 0,2
Никель остальное

Также был получен сплав по составу-прототипу.

Механические свойства при 20°С и при рабочей температуре 650°С предлагаемого сплава и сплава-прототипа определены по стандартным методикам испытания и представлены в таблице 1.

Таблица 1
Механические свойства
при 20°С при 650°С
Предел прочности σВ Предел текучести
σ0,2
Относитель-ное удлинение δ Относительное сужение ψ Жаропрочность (длительная прочность) σ100 МЦУ σN=104 СРТУ ΔК=44 МПа·м0,5
МПа % МПа мм/цикл
предлага-емый 1640 1210 16,0 16,9 1150 1160 2,2·10-4
прототип 1510 1030 15,5 16,8 1000 1000 5,2·10-4

Таким образом, сплав предлагаемого состава превосходит прототип по характеристикам прочности: на 8-10% по пределу прочности и на 16-20% по пределу текучести; а также на 13-17% - по жаропрочности при рабочей температуре 650°С. При этом сплав предлагаемого состава обладает более высокими характеристиками надежности, такими как сопротивление МЦУ (выше на 15-20%) и скорость распространения усталостной трещины (в 2-3 раза меньше), чем прототип.

В результате этого применение предлагаемого сплава для изготовления валов, дисков и других деталей газотурбинных двигателей позволит, за счет высокой прочности, снизить удельный вес двигателя на 10-15%, за счет высокой жаропрочности, повысить ресурс работы 1,2-1,4 раза. А также, за счет высокого сопротивления МЦУ и низкой скорости распространения усталостной трещины, увеличить эксплуатационную надежность на 10-12%.

Жаропрочный порошковый никелевый сплав, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, ниобий, гафний, бор, цирконий, магний и церий, отличающийся тем, что он дополнительно содержит железо, марганец и кремний при следующем соотношении компонентов, мас.%:

Углерод 0,07-0,12
Хром 10,0-12,0
Кобальт 13,0-15,0
Вольфрам 4,6-5,6
Молибден 2,7-3,5
Титан 2,5-3,5
Алюминий 3,7-4,4
Ниобий 3,1-3,8
Гафний 0,05-0,2
Бор 0,005-0,05
Цирконий 0,001-0,05
Магний 0,001-0,05
Церий 0,001-0,05
Железо 0,01-1,0
Марганец 0,001-0,5
Кремний 0,001-0,5
Никель Остальное



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, предназначенным для производства методом направленной кристаллизации монокристаллических рабочих лопаток, а также и других элементов горячего тракта турбин высокотемпературных газовых двигателей, длительно работающих при температурах до 1100°С.

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. .
Изобретение относится к области металлургии и касается составов сплавов, используемых для изготовления штампового инструмента для пластмасс. .
Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во всеклиматических условиях.
Изобретение относится к производству литейных жаропрочных сплавов на основе никеля, предназначенных для производства методом направленной кристаллизации деталей высокотемпературных газовых турбин, в том числе монокристаллических лопаток, длительно работающих при температурах свыше 1000°С.
Изобретение относится к области металлургии, в частности к составам сплавов на основе никеля, которые могут быть использованы для изготовления деталей двигателей. .

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах.

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах.

Изобретение относится к защитному слою, сплаву, из которого он выполнен, и конструктивному элементу. .
Изобретение относится к порошковой металлургии, в частности к получению жаропрочных сплавов на основе легированного интерметаллида NiAl. .
Изобретение относится к области металлургии, а именно к способам получения медных сплавов для фасонных отливок. .

Изобретение относится к способам получения порошка квазикристаллических сплавов системы Al-Cu-Fe и может быть использовано для антифрикционных присадок, антипригарных покрытий, для создания износостойкого инструмента.

Изобретение относится к металлургии цветных металлов, в частности к получению сплавов на основе алюминия с редкими металлами. .

Изобретение относится к способам получения гранул металлических материалов с квазикристаллической структурой и может быть использовано для наполнителей композиционных материалов.
Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов системы Al-Li-Mg-Be, используемых в качестве конструкционного материала для стрингеров, панелей и других деталей в авиакосмической технике, гражданской авиации, судостроении и наземном транспортном машиностроении, в том числе и в сварных конструкциях.

Изобретение относится к порошковой металлургии, в частности к жаропрочным порошковым сплавам на основе алюминида никеля. .

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. .
Изобретение относится к порошковой металлургии, в частности к получению жаропрочных порошковых сплавов на основе интерметаллидов. .
Изобретение относится к области электротехники, в частности к композиционным материалам на медной основе, и может быть использовано для изготовления контактных элементов токоприемников электроподвижного состава железных дорог, городского и промышленного транспорта.
Изобретение относится к порошковой металлургии, в частности к получению сплавов на основе упрочненного оксидами легированного интерметаллида NiAl
Наверх