Композиционный материал для смачиваемого катода алюминиевого электролизера

Композиционный материал для смачиваемого катода алюминиевого электролизера относится к области цветной металлургии, в частности к технологии производства алюминия методом электролиза криолит-глиноземных расплавов. Композиционный материал состоит из смачиваемого жидким алюминием тугоплавкого соединения - диборида титана и связующего, где в качестве связующего используют высокоглиноземистый цемент, причем соотношение компонентов диборид титана:цемент выбирают 9:1. Обеспечивается электропроводность материала, приводящая к повышению технологичности, снижению энергетических и трудовых затрат, улучшению технико-экономических показателей процесса производства смачиваемого материала и изделий на его основе без снижения уровня функциональных и эксплуатационных свойств. 1 табл.

 

Изобретение относится к области цветной металлургии, в частности к технологии производства алюминия методом электролиза криолит-глиноземных расплавов.

В действующей современной технологии электролиза в горизонтальных электролизерах катодом служит углеграфитовая подина, не смачиваемая расплавленным алюминием, что сопряжено с целым рядом известных недостатков (повышенный износ и деградация подины, огнеупорной и теплоизолирующей футеровки, повышенное потребление электроэнергии и пр.). Смачиваемый алюминием катод имеет значительные преимущества, устраняющие указанные недостатки, вследствие чего это желательный элемент в действующей горизонтальной технологии и необходимое условие реализации перспективных конструкций электролизеров, таких как ванны с дренированным катодом или с вертикальным расположением электродов [Sorlie М., Оуе Н.А. Cathodes in aluminium electrolysis. 2nd edition. Aluminium-Verlag, 1994. 408 p.].

Смачиваемый катод алюминиевого электролизера как горизонтальной, так и вертикальной конструкции может быть реализован различными путями, в частности путем нанесения на углеграфитовую или иную проводящую основу смачиваемого покрытия в виде композитного слоя определенной толщины, содержащего порошок, как правило, диборида титана, или футерования проводящей основы плитками из композита на основе того же диборида. Диборид титана - основной функциональный компонент, высокоэлектропроводный, хорошо смачиваемый алюминием и, в то же время, слабо взаимодействующий с алюминием и электролитом. Другим основным компонентом смачиваемого композиционного материала является связующее - вещество органической (полимерные смолы, пеки) или неорганической (коллоидные растворы оксидов, истинные растворы сложных солей и т.п.) природы.

При изготовлении смачиваемого материала катода в процессе термообработки органическое связующее, подвергаясь пиролизу, образует углерод, а неорганическая связка - соответствующий оксид. При этом компоненты материала скрепляются в монолитный твердый композит. Смачиваемость алюминием достигается за счет высокого объемного содержания в готовом композите диборида титана.

Известны технические решения по реализации смачиваемого покрытия подины алюминиевых электролизеров, варианты которого изложены в многочисленных патентах (см., например, Секхар Д.А., де Нора В. Суспензия, углеродсодержащий компонент ячейки, способ нанесения огнеупорного борида, способ защиты углеродсодержащего компонента, масса углеродсодержащего компонента, компонент электрохимической ячейки, способ повышения устойчивости к окислению, ячейка для производства алюминия и использование ячейки. / Патент РФ №2135643. 27.08.1999). В предложенном композиционном материале покрытия связующим служит так называемый «коллоидный глинозем» - стабилизированная коллоидная суспензия нанопорошка оксида алюминия с размерами частиц 10-50 нм. При обжиге в материале покрытия происходят твердофазные реакции между диборидом и связующим с образованием межфазных алюминатов (например, Al2TiO5), за счет чего обеспечивается связность и прочность материала покрытия. Такое связующее ценно тем, что:

- практически не взаимодействует с расплавленным алюминием и не растворяется в нем, в противоположность углеродной связке, что определяет его большую химическую износостойкость и обеспечивает возможность длительной работы материала катода;

- за счет образования корунда из связующего обеспечивается также высокая механическая износостойкость катода;

- не привносит дополнительных посторонних примесей в катодный алюминий.

Общим недостатком катодных покрытий является их небольшая толщина, как правило, от 1 до 20 мм, что ограничивает их срок службы вследствие растворения основного функционального компонента - диборида титана - в расплаве алюминия, а также механических повреждений, отслоений и т.п.

Наиболее близким аналогом изобретения - прототипом - по совокупности существенных признаков является техническое решение, описанное в патенте Sekhar J.A, Duruz J.J., de Nora V. Production of bodies of refractory borides. / US Pat. N 5,753,163. 19.05.1998. Реализован смачиваемый материал катода на неорганическом связующем - «коллоидном глиноземе», из которого предлагается изготовлять объемные изделия, например плитки толщиной не менее 3 мм, наклеиваемые на углеграфитовый катод и придающие ему свойство смачивания алюминием. Материал изготовляли методом литья или прессования под давлением порошкового шликера, состоящего из >90% диборида титана и коллоидного раствора глинозема (<10% в пересчете на сухой Аl2О3) с дальнейшей операцией термообработки-обжига «зеленых» заготовок при температуре до 1600°C в атмосфере инертного газа - аргона для предотвращения окисления диборида. Указывают, что при более высоком содержании глинозема материал становится непроводящим.

Существенными недостатками предложенного решения являются: низкая технологичность изготовления объемных изделий и высокая энергоемкость финальной операции технологии - обжига, который производится при высокой температуре, а также применение дорогостоящего «коллоидного глинозема» в качестве связующего.

Задачей изобретения является создание смачиваемого алюминием катодного материала, который может быть использован как для изготовления футеровочных объемных изделий (кирпичи, плитки и т.п.) для подины горизонтального электролизера, так и монолитного катода в виде пластин, брусков необходимой конструкции для вертикального электролизного аппарата.

Таким образом, технический результат, получаемый в результате использования предлагаемого изобретения, состоит в повышении технологичности, снижении энергетических и трудовых затрат, улучшении технико-экономических показателей процесса производства смачиваемого материала и изделий на его основе без снижения уровня функциональных и эксплуатационных свойств.

Технический результат достигается тем, что в композиционном материале для смачиваемого катода алюминиевого электролизера, состоящем из смачиваемого жидким алюминием тугоплавкого соединения - диборида титана и связующего, новым является то, что в качестве связующего используют высокоглиноземистый цемент, причем соотношение компонентов диборид титана:цемент составляет 9:1, для обеспечения электропроводимости материала.

Эти признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». При изучении других известных технических решений в данной области техники признаки, отличающие заявляемое изобретение от прототипа, не выявлены, и потому они обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».

Суть предложения состоит в том, что в качестве связующего в катодном композиционном материале на основе диборида титана используют промышленный высокоглиноземистый цемент, а соотношение компонентов диборид титана:цемент выбирают таким, чтобы обеспечить электропроводимость материала и всего катода, т.е. 9:1. Величина электропроводности материала должна быть достаточной для пуска электролизера. При меньшем соотношении материал имеет слишком низкую электропроводимость, а при большем снижается его механическая прочность.

От прототипа заявляемый композиционный материал для смачиваемого катода отличается тем, что в качестве связующего используют высокоглиноземистый цемент, производимый в промышленных масштабах и, следовательно, доступный и дешевый.

Для проверки предлагаемого технического решения, технологии изготовления композиционного материала системы TiB2/Аl2О3, его тестирования и испытаний функциональных свойств, в лабораторных условиях был апробирован ряд вариантов вещественного состава материала. Использован порошок диборида титана фракции -44 мкм и промышленный высокоглиноземистый цемент «Алит-97» фирмы «ООО Алитер-Акси». Цемент был дополнительно отсеян от крупного наполнителя на сите 500 мкм. Технология изготовления образцов композита следовала рекомендациям фирмы-производителя по применению цемента: смешивание исходных порошков в течение 5-10 мин, затворение минимальным количеством воды и перемешивание, заполнение формы с одновременным вибрированием, отверждение смеси, сушка при постепенном подъеме температуры до 150°С, дальнейший подъем температуры и отжиг при 650°С в течение 1 ч. Отжиг производился в закрытом контейнере под углеродной засыпкой во избежание возможного окисления диборида титана при повышенных температурах.

Таблица
Составы и свойства синтезированных образцов материалов
№ пп Состав, мас.% Электросопротивление, Ом Относ. плотность, % Прочность, МПа
1 50 TiB2-50 Алит-97 >106 64…68 60…70
2 65 TiB2-35 Алит-97 >106 63…65 50…60
3 80 TiB2-20 Алит-97 ~10…100 62…65 30…40
4 90 TiB2-10 Алит-97 <1 60…64 15…20

Прочность катодного материала после заключительной термообработки, а также стойкость к термическим напряжениям были достаточно высоки, контролировали их качественно путем ударных воздействий и жесткого термоциклирования (быстрый нагрев до 800°C - охлаждение на воздухе при комнатной температуре), а также подвергали измерениям на сжатие. Видимых повреждений в результате термических ударов не наблюдалось. Прочность на сжатие понижается вместе со снижением содержания цемента, но остается на приемлемом для целевого технического применения уровне (см. таблицу). Электросопротивление образцов размером около 15×15×60 мм оценивали полуколичественно при помощи электронного омметра. Приемлемым считали значения на уровне не более 10 Ом. Так же, как и в прототипе, высокий уровень электропроводности композита наблюдался у составов с содержанием диборида титана порядка 90%.

Образцы, изготовленные из предлагаемого композиционного материала, протестированы в качестве вертикальных катодов в лабораторной электрохимической ячейке при следующих условиях: криолитовое отношение KO=1,8, электролит насыщен по глинозему, температура электролиза 920°C, рабочая плотность тока на катоде 0,92 А/см2 (общий ток ячейки - 31 A), длительность испытания - 5 ч. В качестве анодов использовались графитовые стержни, периодически заменявшиеся в ходе электролиза. На начальном этапе электролиза (до 20-30 мин) наблюдалось резкое снижение рабочего напряжения ячейки, связанное со снижением омических потерь в катоде по мере смачивания его поверхности и образования слоя алюминия. Визуальный контроль после испытания показал, что в процессе электролиза катоды смачивались и покрывались пленкой алюминия, при этом внешние размеры и форма катода после испытаний не изменились.

В заявляемом композиционном материале для смачиваемого катода алюминиевого электролизера в качестве связующего используют высокоглиноземистый цемент, производимый в промышленных масштабах и, следовательно, доступный и дешевый.

Совокупные преимущества технологии изготовления изделий из смачиваемого алюминием композиционного материала с использованием цемента обеспечивают технологическую и экономическую эффективность предлагаемого решения. Кроме того, технология изготовления смачиваемого материала на цементе универсальна и позволяет наносить материал в виде покрытия, изготовлять объемные изделия в виде плиток, кирпичей и т.п. для футеровки углеграфитовых материалов алюминиевого электролизера, отливать блоки «по месту», непосредственно на подине электролизера, а также получать катоды для перспективных вертикальных конструкций электролизеров произвольных размеров и формы методом литья или прессования.

Композиционный материал для смачиваемого катода алюминиевого электролизера, состоящий из смачиваемого жидким алюминием диборида титана и связующего, отличающийся тем, что он в качестве связующего содержит высокоглиноземистый цемент при соотношении компонентов диборид титана:цемент, составляющем 9:1.



 

Похожие патенты:

Изобретение относится к вторичным укрытиям электролизеров Содерберга для производства алюминия. .

Изобретение относится к способу изготовления компонентов электролитической ячейки для получения алюминия, т.е. .

Изобретение относится к области цветной металлургии, в частности к производству углеродных материалов, применяемых для футеровки подины электролизера. .

Изобретение относится к набивной пасте для набивки периферийных швов катодов электролизеров получения алюминия. .
Изобретение относится к способам подготовки алюминиевых электролизеров к обжигу и пуску, в том числе после капитального ремонта. .

Изобретение относится к электролитическому производству алюминия, а именно к конструктивным элементам алюминиевых электролизеров. .

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, а именно к конструктивным элементам алюминиевых электролизеров.

Изобретение относится к способу охлаждения электролизера для производства алюминия электролизом расплава путем получения капелек текучего теплоносителя или диспергированного текучего теплоносителя, предпочтительнее, в замкнутом объеме в контакте с определенной поверхностью по меньшей мере одной стенки кожуха электролизной ванны электролизера таким образом, чтобы вызвать испарение всех или части упомянутых капелек при контакте с упомянутой поверхностью и осуществить отбор тепла от этой поверхности.

Изобретение относится к области получения металлооксидных покрытий осаждением из жидкой фазы и может быть использовано при изготовлении тонированного, светоотражающего стекла большого формата, при нанесении декоративных покрытий, рисунков на керамические изделия, а также при формировании диэлектрических и полупроводниковых покрытий со специальными свойствами в электронике.
Изобретение относится к области получения тугоплавких керамических материалов, в частности к способам получения нитрида алюминия в режиме горения. .
Наверх