Датчик резонаторный

Изобретение относится к области измерений механических параметров. Датчик резонаторный содержит основание из высокодобротного материала, в котором выполнены сквозные прорези с образованием чувствительного элемента и его маятникового подвеса в виде, по крайней мере, двух стержней, и стержневого резонатора, одни концы которых соединены с основанием, а другие концы соединены с чувствительным элементом, свободно размещенным в углублениях крышек, расположенных по обе стороны основания и соединенных с ним. На стержнях подвеса, примыкающих к основанию, выполнены упругие шарниры с возможностью перемещения чувствительного элемента относительно основания в направлении измерительной оси, расположенной перпендикулярно к плоскости основания. В каждой крышке выполнен упругий ограничитель хода с возможностью перемещения в направлении измерительной оси и взаимодействия с чувствительным элементом. Техническим результатом является увеличение уровня прочности датчика резонаторного к воздействию высоконелинейных динамических ударных воздействий большой амплитуды за счет взаимодействия упругого ограничителя хода с чувствительным элементом датчика резонаторного. 2 ил.

 

Изобретение относится к области измерений механической силы и связанных с ней производных: момента, давления, массы, деформаций, ускорений в жестких условиях эксплуатации.

Наиболее близким по технической сущности к заявляемому устройству является датчик резонаторный (патент RU 2217767, G01P 15/10, опубл. 27.11.2003), содержащий основание из высокодобротного материала, в котором выполнены сквозные прорези с образованием чувствительного элемента и его маятникового подвеса в виде, по крайней мере, двух стержней, и стержневого резонатора, одни концы которых соединены с основанием, а другие концы соединены с чувствительным элементом, свободно размещенным в углублениях крышек, расположенных по обе стороны основания и соединенных с ним, на стержнях подвеса, примыкающих к основанию, выполнены упругие шарниры для перемещения чувствительного элемента относительно основания в направлении измерительной оси. Вышеуказанное устройство выбрано в качестве прототипа.

Недостатком прототипа является низкая прочность к действию высоконелинейных динамических ударов большой амплитуды.

Техническим результатом заявляемого изобретения является повышение уровня прочности к воздействию высоконелинейных динамических ударных воздействий большой амплитуды.

Для достижения технического результата в датчике резонаторном, содержащем основание из высокодобротного материала, в котором выполнены сквозные прорези с образованием чувствительного элемента и его маятникового подвеса в виде, по крайней мере, двух стержней, и стержневого резонатора, одни концы которых соединены с основанием, а другие концы соединены с чувствительным элементом, свободно размещенным в углублениях крышек, расположенных по обе стороны основания и соединенных с ним, на стержнях подвеса, примыкающих к основанию, выполнены упругие шарниры с возможностью перемещения чувствительного элемента относительно основания в направлении измерительной оси, новым является то, что в каждой крышке выполнен упругий ограничитель хода с возможностью перемещения в направлении измерительной оси и взаимодействия с чувствительным элементом.

Выполнение в каждой крышке упругого ограничителя хода позволяет увеличить уровень прочности датчика резонаторного к воздействию высоконелинейных динамических ударных воздействий большой амплитуды за счет увеличения времени и площади контакта чувствительного элемента с упругим ограничителем хода, что приводит к увеличению времени и уменьшению амплитуды ударного воздействия.

Новая совокупность существенных признаков позволяет получить конструкцию датчика резонаторного, стойкого к воздействию высоконелинейных динамических ударных воздействий большой амплитуды.

На фигурах 1, 2 представлена конструкция заявляемого устройства. Устройство содержит: основание 1, чувствительный элемент 2, подвесы чувствительного элемента 3, упругие шарниры подвеса чувствительного элемента 4, силочувствительный стержневой резонатор 5, крышки 6, упругий ограничитель хода 7.

Устройство содержит основание 1 из высокодобротного материала, в котором выполнены сквозные прорези с образованием чувствительного элемента 2 и его маятникового подвеса 3 в виде, по крайней мере, двух стержней, и стержневого резонатора 5, одни концы которых соединены с основанием 1, а другие концы соединены с чувствительным элементом 2. На стержнях подвеса 3, примыкающих к основанию 1, выполнены упругие шарниры 4 с возможностью перемещения чувствительного элемента 2 относительно основания 1 в направлении измерительной оси, расположенной перпендикулярно к плоскости основания 1. Чувствительный элемент 2 свободно размещен в углублениях крышек 6, расположенных по обе стороны основания 1 и соединенных с ним. В каждой крышке 6 выполнен упругий ограничитель хода 7 с возможностью перемещения в направлении измерительной оси и взаимодействия с чувствительным элементом 2.

Устройство работает следующим образом. Выше описанная конструкция обладает набором собственных частот колебаний. При действии высоконелинейных динамических ударов большой амплитуды чувствительный элемент 2 отклоняется, соударяясь с поверхностью крышки 6, и отскакивает, порождая упругую стоячую волну, распространяющуюся по материалу пространственной рамы, образуемой чувствительным элементом 2, подвесом 3, его упругими шарнирами 4, стержневым резонатором 5. Упругая стоячая волна возбуждает колебания элементов пространственной рамы на их собственных частотах, при этом ни один из элементов пространственной рамы не соприкасается с поверхностью крышки 6. Поскольку материал датчика имеет высокую добротность, амплитуды перемещения элементов конструкции на собственных частотах колебаний значительно превосходят значения перемещений при статическом воздействии, что приводит к возникновению в местах перехода резонатора 5 и упругого шарнира 4 к основанию 1 и чувствительному элементу 2 напряжений, близких к предельно допустимым. При выполнении условия разности фаз колебаний элементов пространственной рамы, имеющих совпадающие места крепления, напряжения, возникающие в местах перехода, складываются, что приводит к превышению предельно допустимых значений напряжений и, следовательно, к нарушению целостности конструкции пространственной рамы.

При воздействии в направлении измерительной оси датчика резонаторного ударного импульса, чувствительный элемент 2 двигается в направлении одной из крышек 6 и соприкасается с упругим ограничителем хода 7, который двигается в одном направлении с чувствительным элементом с большей скоростью, но меньшей амплитудой, и начинает скользить по нему с некоторым трением, при этом время взаимодействия чувствительного элемента 2 и упругого ограничителя хода 7 многократно возрастает по сравнению с тем, когда упругий ограничитель хода 7 был бы неподвижен. Соотношение собственных частот упругого ограничителя хода 7 и чувствительного элемента 2 должно быть выбрано таким образом, чтобы контакт происходил прежде, чем упругий ограничитель хода 7 пройдет половину величины зазора, отделяющего его от неподвижной части крышки 6.

На основе пьезоэлектрического α-кварца был изготовлен опытный образец, который подтвердил работоспособность устройства.

Датчик резонаторный, содержащий основание из высокодобротного материала, в котором выполнены сквозные прорези с образованием чувствительного элемента и его маятникового подвеса в виде, по крайней мере, двух стержней, и стержневого резонатора, одни концы которых соединены с основанием, а другие концы соединены с чувствительным элементом, свободно размещенным в углублениях крышек, расположенных по обе стороны основания и соединенных с ним, на стержнях подвеса, примыкающих к основанию, выполнены упругие шарниры с возможностью перемещения чувствительного элемента относительно основания в направлении измерительной оси, расположенной перпендикулярно плоскости основания, отличающийся тем, что в каждой крышке выполнен упругий ограничитель хода с возможностью перемещения в направлении измерительной оси и взаимодействия с чувствительным элементом.



 

Похожие патенты:

Изобретение относится к области измерений механической силы и производных от нее величин, момента силы, давления, массы, деформаций, линейных и угловых ускорений. .

Изобретение относится к области измерений механических параметров. .

Изобретение относится к области измерительной техники. .

Изобретение относится к области измерения параметров вращения вала и может быть использовано в системах автоматического управления. .

Изобретение относится к струнным акселерометрам и предназначено для измерения ускорений при движении реактивного снаряда реактивной системы залпового огня. .

Изобретение относится к области измерения параметров вращения и может быть использовано в системах автоматического управления. .

Изобретение относится к области измерений механических параметров. .

Изобретение относится к измерениям механических параметров. .

Изобретение относится к области измерения параметров вращения вала. .

Изобретение относится к приборам систем инерционного управления подвижными объектами и может быть использовано для решения задач навигации и ориентации этих объектов.

Изобретение относится к области измерений механических параметров

Изобретение относится к измерениям механических параметров, в частности силы или ускорения

Изобретение относится к измерительной технике

Изобретение относится к области космической техники и может быть использовано для определения ускорения поступательного движения космического аппарата

Изобретение относится к измерительной технике и может быть использовано для измерений ускорения и других параметров

Изобретение относится к измерительной технике, представляет собой преобразователь пути и линейной скорости движения объекта в код и может использоваться при контроле положения и скорости при малых (0,1 мкм÷10 мкм) и больших (до 10 см) перемещениях. Для улучшения метрологических и весогабаритных характеристик преобразователя пути и линейной скорости электрический и магнитный блоки преобразователя реализованы на базе техники цилиндрических магнитных доменов (ЦМД) и микроэлектронного конструирования. Технический результат достигается тем, что с помощью магнитных триггеров 10 и 17, магнитного барьера 19 и электронного блока «реверс» 20, который осуществляет переключение фаз тактирующего генератора 1, проводится измерение пути и скорости объекта независимо от направления его движения, результаты которого регистрируются в счётчиках. Пределы измерения ограничиваются скоростью движения ЦМД (20 м/с и более). При этом благодаря малым размерам ЦМД (0,1 мкм÷10 мкм) значительно уменьшаются весогабаритные параметры преобразователей. 1 ил.

Изобретение относится к измерительной технике, а точнее к струнным акселерометрам для автономного определения параметров движения летательных аппаратов и может быть использовано при производстве струнных акселерометров. Сущность изобретения достигается тем, что способ настройки струнного акселерометра, содержащего струну прямоугольного сечения и консольно-закрепленный пластинчатый подвес с грузом, включающий закрепление концов струны между двух плоскостей, предварительно механически обработанных в двух взаимно перпендикулярных направлениях поперек и вдоль струны, и отличается тем, что струну выставляют по оси симметрии подвеса перпендикулярно его плоскости, закрепляют последовательно концы струны на грузе и корпусе при совмещении поверхностей крепления в одну плоскость, сравнивают частоту автоколебаний струны с заданной и при необходимости корректируют длину струны, исходя из выражения: Δ l = ( f − f 0 ) f   l l 2 y + 1 , где Δl - изменение длины струны; f и f0 - фактическая и заданная частота колебаний струны; l и y - длина струны и прогиб подвеса при расположении струны в одной плоскости, при этом вновь механически обрабатывают поверхности крепления до расположения их в одной плоскости, причем длину струны уменьшают, если частота меньше заданной, и увеличивают, если больше, затем прикладывают к грузу в месте крепления струны усилие, плавно изменяющее натяжение струны в рабочем диапазоне частот, и оценивают изменение амплитуды сигнала со струны, добиваясь точной установкой струны попадания частоты и амплитуды сигнала в заданный допуск, после чего проводят термомеханическое старение акселерометра. Изобретение позволяет сократить длительность стабилизации параметров, время сборки и увеличить выход годных струнных акселерометров при изготовлении. 5 ил.

Предлагаемое изобретение относится к области приборостроения и предназначено для автономного измерения ускорения летательных аппаратов. Струнный акселерометр содержит на своем основании чувствительные элементы, включающие струну, закрепленную одним концом на корпусе, другим на грузе, размещенном на упругом пластинчатом подвесе, и магнитоэлектрические приводы для поддержания автоколебаний струн. Для достижения технического результата чувствительный элемент выполнен в виде замкнутого прямоугольного камертона с внутренним креплением, расположенным на одной из сторон корпуса на геометрической оси, проходящей перпендикулярно струне через ее середину, причем каждая пара параллельных сторон чувствительного элемента состоит из нескольких жестко скрепленных участков из материалов с разными температурными коэффициентами линейного расширения. При этом суммы произведений их длин на температурный коэффициент линейного расширения равны соответственно для сторон вдоль и поперек струны, а температурный коэффициент модуля упругости подвеса равен разности температурных коэффициентов линейного расширения подвеса и струны. Изобретение позволяет повысить точность измерения ускорения за счет увеличения добротности струнного резонатора и снижения температурной погрешности и чувствительности к внешним и внутренним механическим воздействиям на напряжения в струне, а также упростить конструкцию и требования к выбору физико-механических свойств к материалам и форме деталей силовой цепи натяжения струны. 4 ил.

Изобретение относится к области измерения механических параметров. Резонатор силочувствительный с изгибной формой колебаний выполнен в виде двух идентичных параллельно расположенных между собой стержней, одни концы которых жестко соединены между собой и с первым элементом приложения измеряемой силы, а другие концы соединены через первые упругие шарниры со вторым элементом приложения измеряемой силы, при этом вторые упругие шарниры выполнены в средней части каждого стержня с образованием клиновидных участков с большей изгибной жесткостью, узкие части которых обращены в сторону первых и вторых упругих шарниров соответственно. Достигаемым техническим результатом является увеличение силовой чувствительности резонатора силочувствительного. 1 ил.

Изобретение относится к метрологии, в частности к датчикам механических ускорений. Датчик представляет собой резонатор, выполненный в виде сдвоенного камертона, и содержит основание, чувствительный элемент с маятниковым подвесом в виде двух стержней, упругие шарниры, размещенные на одной пластине монокристалла кварца Z-среза. Первые концы стержней соединены с чуствительным элементом, а вторые концы через упругие шарниры соединены с основанием. Стержневой резонатор выполнен на второй пластине монокристалла кварца Z-среза меньшей толщины, на концах которого образованы участки с увеличенной поверхностью для присоединения к чувствительному элементу и к основанию соответственно. Стержни резонатора могут иметь как постоянную, так и переменную ширину. В концевых элементах выполнены отверстия для введения стеклоспая, соединяющего участки стержневого резонатора с поверхностями чувствительного элемента и основания. Размер площади концевых участков выбран исходя из использованием стеклоспая, качество соединения определяется по отсутствию гистерезиса при предельных нагрузках на резонатор. Технический результат - повышение точности измерений, уменьшение трудоемкости изготовления. 3 ил.
Наверх