Способ измерения угловых координат нескольких объектов в многоканальных доплеровских рлс

Изобретение относится к радиолокации, а именно к радиолокационным системам наблюдения за объектами на базе многоканальной бортовой импульсно-доплеровской РЛС. Достигаемый технический результат заключается в измерении угловых координат произвольного числа наземных, морских и воздушных объектов, не разрешимых по дальности и доплеровской частоте, в условиях помех измерения. Заявленный способ заключается в том, что осуществляют измерения отраженного сигнала в элементах разрешения дальности и фильтрах доплеровских частот одновременно в Q измерительных каналах, совокупность измерений располагают в составе вектора измерений, который обрабатывают и получают вектор оценок амплитуд поля отражения в элементах дискретизации азимута или угла места, затем по найденной последовательности находят угловые координаты объектов, указанные операции повторяют для всех элементов дальности и фильтров частот и тем самым определяют угловые координаты всех объектов в зоне видимости РЛС.

 

Изобретение относится к радиолокации, а именно к радиолокационным системам наблюдения за объектами на базе многоканальных бортовых импульсно-доплеровских радиолокационных станций (РЛС).

Измерение угловых координат воздушных, наземных и морских объектов с помощью бортовой РЛС необходимо для посадки самолетов и вертолетов на аэродром, в интересах навигации, а также при решении разнообразных тактических задач, связанных с обнаружением объектов и обеспечением безопасности полетов.

Известен способ измерения угловых координат одиночных воздушных объектов, не разрешенных по дальности, основанный на пеленгации объектов с помощью моноимпульсной РЛС с суммарным и двумя разностными каналами, называемый моноимпульсным методом [1, с.95-105]. При этом формируется пеленгационная характеристика (пеленг), линейно зависящая от отклонения объекта по азимуту и углу места относительно равносигнального направления. Однако данный способ не работает для двух и большего числа воздушных объектов, находящихся в зоне видимости РЛС, а также не предназначен для измерения координат наземных и морских объектов. Известен способ измерения координат воздушных объектов в моноимпульсных РЛС, не разрешенных по дальности, но позволяющих разрешить их в узких диапазонах доплеровской частоты [2]. Однако этот способ не работает при неизвестном числе объектов, а также для объектов, не разрешимых по доплеровской частоте (например, неподвижных объектов). Известен также способ оценивания угловых координат известного числа N точечных источников излучения с помощью многоканальной М-элементной антенной решетки [3]. Способ основан на формировании пространственно-временной выборки отраженных сигналов, принятых в зоне видимости РЛС одновременно в М каналах, и оценивании угловых координат источников на основе критерия максимума функции правдоподобия. Однако, как и предыдущие способы, данный способ применим только для случая известного числа источников излучения (объектов), а возможная модификация способа, основанная на переборе гипотез о числе объектов, может не удовлетворять вычислительным ресурсам бортовой ЭВМ в реальном масштабе времени.

Наиболее близким по технической сущности является способ измерения угловых координат двух объектов, не разрешенных по дальности и радиальной скорости (доплеровской частоте) по данным суммарно-разностной моноимпульсной РЛС [2], который заключается в следующем.

1. При данном положении диаграммы направленности антенны (ДНА) комплексный сигнал принятый одновременно в Q измерительных каналах , , селектируется в i-x элементах разрешения по дальности: , где I - число элементов разрешения дальности.

2. В каждом i-м элементе дальности сигнал селектируется по доплеровской частоте fj в j-x узкополосных фильтрах доплеровских частот: , где J - число таких фильтров.

3. Измеряется амплитуда Uq(i,j) сигнала , выделенного в i-м элементе дальности и j-м фильтре доплеровских частот во всех q-x каналах: q=1 - суммарный, q=2 - разностный азимутальный, q=3 - разностный угломестный канал .

4. Если в j-м фильтре доплеровских частот первого (q=1) суммарного канала (соответственно во всех Q одинаково работающих каналах) амплитуда Uq(i,j) превышает порог обнаружения (соответствуют отражению от одного или большего числа элементарных отражателей), то принимается решение о принадлежности сигналов одному или большему числу объектов, частоты отражения от которых находятся в полосе пропускания j-го фильтра доплеровских частот каждого q-го канала .

5. В суммарном канале (q=1) любым известным способом по спектральной характеристике сигнала , принятого в j-й полосе частот, находятся частоты

fk, , k-x источников сигнала и запоминаются значения частотных характеристик для каждого k-го источника . При этом предполагается, что k-e источники (объекты) разрешены по частоте в полосе частот j-го фильтра и имеют одинаковые характеристики во всех Q=3 каналах. Также предполагается, что в силу флуктуации отраженного сигнала по частоте подобные операции можно осуществить в соседней (j+i)-й полосе частот и определить частотные характеристики этих же самых k-x источников .

6. Если число источников два (Kj=2), то измеряются значения сигналов , в j-м и (j+1)-м фильтрах q-x каналов . Эти значения связаны с комплексными амплитудами сигналов отражения от k-х объектов (k=1, 2) следующими зависимостями:

где - комплексная характеристика ДНА q-го канала в координатах азимута φk и угла места θk k-го объекта; - известное значение частотной характеристики j-го фильтра для k-го объекта (одинаковое для всех q-х каналов).

7. Из решения шести уравнений (1) находятся шесть неизвестных

и из отношения полученных величин (2) определяются пеленги:

пропорциональные отклонению k-x объектов по азимуту φk и углу места θk относительно равносигнального направления. Из равенства (2) также могут быть найдены амплитуды сигналов от объектов в i-x элементах разрешения дальности нa j-x доплеровских частотах.

Однако такой способ обладает следующими недостатками.

1. Способ опирается на метод обнаружения k-x объектов и измерения их частот fk, по спектральной характеристике сигнала обработанного в j-й полосе частот доплеровского фильтра. Однако разрешить объекты по частоте не всегда удается, например, при пеленгации неподвижных объектов. Кроме того, подобные операции требуют определенных вычислительных затрат, а число объектов заранее не известно.

2. Если число объектов Kj в j-й полосе частот окажется больше двух, например, Kj=3, то придется увеличить число уравнений системы (1) за счет дополнительных измерений во втором соседнем (j-1)-м фильтре доплеровских частот. Использование измерений соседних фильтров доплеровских частот основано на предположении о флуктуации сигналов по частоте. Однако флуктуации носят вероятностный характер, что не гарантирует получения стабильных измерений частотных характеристик , , в трех фильтрах для всех

Kj объектов.

3. Способ не учитывает наличия помех измерений.

Технический результат направлен на измерение угловых координат произвольного числа наземных, морских и воздушных объектов, не разрешимых по дальности и доплеровской частоте, в условиях помех измерения.

Технический результат предлагаемого технического решения достигается тем, что способ измерения угловых координат нескольких объектов в многоканальных доплеровских радиолокационных станциях (РЛС) заключается в измерении отраженного сигнала в i-x элементах разрешения дальности и j-x фильтрах доплеровских частот одновременно в Q измерительных каналах , определении тех j-x фильтров доплеровских частот, где амплитуда Uq(i, j) сигнала превышает порог обнаружения, и последующей обработке совокупности полученных измерений в j-х фильтрах, отличающийся тем, что совокупность измерений располагают в составе Q-вектора измерений , который умножают справа на K×Q-матрицу весовых коэффициентов Н, вычисляемую заранее, в результате получают K-вектор оценок элементы которого , взятые по модулю, дают распределение амплитуд поля отражения нa j-й линии, являющейся линией окружности, пространственно-протяженного доплеровского элемента разрешения (ДЭР) в k-x элементах дискретизации азимута φ с повышенным в K раз разрешением по углу (при Q>K), далее в найденной последовательности амплитуд определяют угловые координаты точек максимума φm, , в которых амплитуда превышает порог обнаружения, а значения угла места θm, , берут из уравнения линии ДЭР, представленного в виде табулированной зависимости в системе координат носителя РЛС: cosφm cosθm=cosαj, где αj - угол отклонения луча отраженного сигнала от вектора путевой скорости движения носителя РЛС, при этом cosαj=λ·fi/2ν, λ - длина волны, fj - частота j-го фильтра доплеровских частот, ν - путевая скорость носителя, и таким образом находят искомые угловые координаты φm(i, j), θm(i, j), , объектов в i-м элементе дальности и j-м ДЭР, затем указанные операции повторяют для всех значений i, j и тем самым определяют угловые координаты всех объектов в зоне видимости РЛС.

Способ осуществляется следующим образом.

1. При данном положении ДНА комплексный сигнал , принятый одновременно в Q измерительных каналах: селектируется в i-x элементах разрешения по дальности: ,

2. В каждом i-м элементе дальности сигнал селектируется по доплеровской частоте fj в j-x узкополосных фильтрах: , .

3. Последовательность j-x элементов разрешения по частоте ставится в соответствие последовательности j-x элементов разрешения по углу αj и вычисляется косинус этого угла по формуле

где λ - длина волны, fj - частота j-го фильтра, ν - путевая скорость носителя.

4. Измеряется амплитуда Uq(i, j) сигнала , выделенного в i-м элементе дальности и j-м фильтре доплеровских частот во всех q-x каналах и j-x фильтрах доплеровских частот.

5. Для тех j-x фильтров доплеровских частот и q-x каналов (число таких каналов Q1<Q), где амплитуда Uq(i, j) превышает порог обнаружения (соответствует отражению от одного или большего числа объектов), по совокупности q-x сигналов , изложенным в п.8 способом, измеряется одна угловая координата (азимут φ или угол места θ в самолетной системе координат) каждого точечного отражателя, находящегося в i, j-м ДЭР.

6. Вторая угловая координата для известного косинуса угла αj вычисляется на основе уравнения линии ДЭР

по формуле

причем первая формула в (5) выбирается в том случае, если взятый по модулю угловой коэффициент касательной , проведенной к линии ДЭР, меньше . Иначе выбирается вторая формула. Измерение азимута при наблюдении поверхности предпочтительней, чем измерение угла места, так как в этом случае влияние боковых лепестков ДНА слева и справа (по горизонтали) оказывается равномерным.

7. Угловой коэффициент вычисляется заранее взятием производной от θ по φ:

причем его можно рассчитать только для угловых координат α, φ центра ДНА, так как в пределах узкой ДНА (например, 1°×1,5°) линии ДЭР наклонены примерно под одним и тем же углом, и слабо зависит от α и φ.

8. Измерение первой угловой координаты в п.5 осуществляется следующим образом.

8.1. Совокупность измеренных значений , располагается в составе Q-вектора измерений , который умножается справа на K×Q-матрицу весовых коэффициентов Н, вычисляемую заранее по указанной далее методике, в результате получают K-вектор оценок

8.2. Элементы , вектора оценок взятые по модулю, дают распределение амплитуд поля отражения на j-й линии пространственно-протяженного доплеровского элемента разрешения ДЭР в k-x элементах дискретизации одной угловой координаты φ (например, азимута) с повышенным в K раз разрешением по углу (при Q>K).

8.3. В найденной последовательности амплитуд определяются угловые координаты точек максимума φm, (например, азимута), в которых амплитуда превышает порог обнаружения, а значения второй угловой координаты (угла места) θm, , как уже было указано в п.6, берутся из уравнения линии ДЭР (5), представленного для ускорения вычислений в виде табулированной зависимости.

9. Таким образом находятся искомые угловые координаты φm (i, j), θm(i, j), , объектов в i-м элементе дальности и j-м ДЭР.

10. Операции пп.1-9 повторяют для всех значений i, j и тем самым определяют угловые координаты всех объектов в зоне видимости РЛС.

Расчетная часть

1. Вывод уравнения линии ДЭР сводится к следующему. Доплеровской частоте fj ставится в соответствие угол αj отклонения луча отраженного сигнала от вектора путевой скорости движения носителя РЛС, причем частота fj связана с углом αj зависимостью (например, [4], с.273):

где ν - путевая скорость; λ - длина волны РЛС.

С учетом ускорения движения носителя зависимость (8) усложняется [4]:

где r - радиальная дальность; t - время приема отраженного сигнала.

В элементах разрешения дальности коническая поверхность постоянного угла αj (частоты fj), имеющая общую вершину с конической поверхностью ДНА, пересекает сферическую поверхность уровня дальности в пределах ДНА по линии окружности, какой и является линия ДЭР. Центр данной окружности лежит на оси ОХ прямого кругового конуса постоянного значения угла αj. По этой же оси направлен вектор путевой скорости. В самолетной системе координат положительная полуось ОХ совмещается с вектором скорости . Тогда линия ДЭР (линия окружности) без искажения проецируется по плоскость YOZ. Уравнение окружности с центром в начале координат и радиусом R в плоскости YOZ:

Связь прямоугольных y, z и сферических r, φ, θ (дальность, азимут, угол места) координат произвольной точки, лежащей на окружности, устанавливается обычным образом:

После подстановки (3) в (2) получается уравнение линии ДЭР:

где θ∈[0,90°], αj∈[0°,90°], φ∈(-90°,90°). Угол места θ при наблюдении за поверхностью отсчитывается в положительном направлении по часовой стрелке от горизонтальной плоскости XOY, азимут φ - против часовой стрелки от оси ОХ (направления движения носителя РЛС).

Уравнение (11) линии ДЭР связывает угловые координаты азимута φ и угла места θ точки в пространстве, принадлежащей линии ДЭР в пределах ДНА, с косинусом угла αj, зависящим от доплеровской частоты fj в соответствии с (8), в самолетной системе координат.

2. Методика измерения (оценивания) первой угловой координаты (например, азимута) сводится к следующему. Пусть в i-м элементе дальности, в j-м фильтре доплеровских частот нескольких q-x приемных каналов (общим числом Q1≤Q) зафиксированы (измерены) значения отраженных сигналов от неизвестного числа точечных объектов, расположенных нa j-й линии ДЭР, амплитуды которых превысили порог обнаружения. Модель измерений имеет вид следующей суммарной линейной зависимости:

где суммирование ведется в области пересечения q-x ДНА по k-м элементам дискретизации азимута φk или угла места θk, связанным между собой уравнением (11) линии ДЭР в системе координат носителя РЛС:

причем с вычислительной точки зрения зависимость (13) целесообразно табулировать; - комплексная амплитуда (огибающая [5]) сигнала, отселектированного в i-м элементе дальности, j-м фильтре доплеровских частот q-го канала; - комплексные коэффициенты ДНА q-го канала, взятые в координатах φk, θk k-го элемента дискретизации относительно центра q-й ДНА в системе координат носителя; - искомые комплексные амплитуды поля отражения в k-x элементах дискретизации на линии ДЭР; - комплексная помеха типа белого шума.

Совокупность q-x измерений (12) при фиксированных i, j описывается векторно-матричной моделью [6]:

где - вектор измерений ;

A - Q1×K-матрица коэффициентов ДНА и ленточного типа; К-вектор искомых комплексных амплитуд ; - вектор помех .

В описании (14) решается задача нахождения вектора оптимальных оценок по методу наименьших квадратов (МНК), при этом МНК-оценки имеют стандартный вид (например, [6]):

где δ - параметр регуляризации, необходимый для обращения матрицы А*T А; *Т - символ комплексного сопряжения и транспонирования; Е - единичная матрица; Н - матрица комплексных весовых коэффициентов, вычисляемая заранее. Точность оценивания по формуле (15) при δ→0 характеризуется корреляционной матрицей ошибок оценивания . Для некоррелированных помех

pq(i, j) с дисперсией дисперсия ошибки оценивания отдельного элемента вектора составляет , где tr - след матрицы, и уменьшается с увеличением числа каналов Q1.

Предложенный способ позволяет измерять угловые координаты неизвестного числа точечных отражателей (объектов) в составе доплеровских элементов разрешения, что отличает его от ранее известных прототипов. Помимо измерения координат воздушных объектов, способ позволяет измерять угловые координаты наземных и надводных объектов. На основе измеренных координат всех точечных отражателей может быть построено трехмерное изображение поверхности.

Литература

1. Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. М.: Радио и связь, 1984. 312 с.

2. Жибуртович Н.Ю., Абраменков В.В., Савинов Ю.И., Климов С.А., Чижов А.А. Определение радиолокационной системой с моноимпульсным пеленгатором угловых координат отдельных целей из состава группы // Радиотехника. 2005, №6. С.38-41.

3. Сычев М.И. Оценивание угловых координат близко расположенных источников излучения по пространственно-временной выборке // Радиоэлектроника. 1991, №5. С.33-39.

4. Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для вузов / Под ред. Г.С.Кондратенкова. М.: Радиотехника, 2005. 368 с.

5. Радиолокационные станции с цифровым синтезированием апертуры антенны / В.Н.Антипов, В.Т.Горяинов, А.Н.Кулин, Толстов Е.Ф. и др. Под ред. В.Т.Горяинова. М.: Радио и связь, 1988. 304 с.

6. Клочко В.К. Методы оптимального восстановления радиолокационных изображений поверхности // Автометрия. 2005. Т.41. №6. С.62-73.

Способ измерения угловых координат нескольких объектов в многоканальных доплеровских радиолокационных станциях (РЛС), заключающийся в измерении отраженного сигнала в i-x элементах разрешения дальности и j-x фильтрах доплеровских частот одновременно в Q измерительных каналах определении тех j-x фильтров доплеровских частот, где амплитуда Uq(i,j) сигнала превышает порог обнаружения, и последующей обработке совокупности полученных измерений в j-x фильтрах, отличающийся тем, что совокупность измерений располагают в составе Q-вектора измерений Y, который умножают справа на K×Q-матрицу весовых коэффициентов Н, вычисляемую заранее, в результате получают К-вектор оценок элементы которого взятые по модулю, дают распределение амплитуд поля отражения на j-й линии, являющейся линией окружности, пространственно-протяженного доплеровского элемента разрешения (ДЭР) в k-x элементах дискретизации азимута φ с повышенным в К раз разрешением по углу (при Q>K), далее в найденной последовательности амплитуд определяют угловые координаты точек максимума φm, в которых амплитуда превышает порог обнаружения, а значения угла места θm, берут из уравнения линии ДЭР, представленного в виде табулированной зависимости в системе координат носителя РЛС: cos φm cosθm=cos αj, где αj - угол отклонения луча отраженного сигнала от вектора путевой скорости движения носителя РЛС, при этом cos αj=λ·fj/2ν, λ - длина волны, fj частота j-го фильтра доплеровских частот, ν - путевая скорость носителя, и таким образом находят искомые угловые координаты φm(i,j), θm(i,j), объектов в i-м элементе дальности и j-м ДЭР, затем указанные операции повторяют для всех значений i,j и тем самым определяют угловые координаты всех объектов в зоне видимости РЛС.



 

Похожие патенты:

Изобретение относится к области систем сопровождения и наблюдения за подвижными объектами, в том числе с качающегося основания, и может быть использовано для управления воздушным движением.

Изобретение относится к области систем сопровождения и наблюдения за подвижными объектами и может быть использовано для управления воздушным движением. .

Изобретение относится к автоматическому регулированию и предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением.

Изобретение относится к области систем слежения за подвижными объектами, в том числе с качающегося основания, а также может быть использовано для управления воздушным движением.

Изобретение относится к радиотехнике, а именно к большим полноповоротным радиотелескопам (РТ), и может использоваться для обнаружения и сопровождения квазистационарных и удаленных космических источников радиоизлучения (КИР).

Изобретение относится к области радиолокации, а также автоматики и может быть использовано для фильтрации параметров траектории (координат) сопровождаемых радиолокационных объектов или для фильтрации каких-либо параметров других случайных процессов.

Изобретение относится к системам траекторного сопровождения. .

Изобретение относится к области радиолокации и может быть использовано при сопровождении траекторий объектов в обзорных РЛС с двумерной ФАР с узким лучом по обеим угловым координатам (УК).

Изобретение относится к автоматическому регулированию, предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением

Изобретение относится к автоматическому регулированию, предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением

Изобретение относится к обнаружителям маневра воздушной цели радиолокационными системами сопровождения

Изобретение относится к радиотехнике и может быть использовано в радиотехнических и радиолокационных системах измерения параметров траекторий летательных аппаратов и других системах аналогичного назначения, в которых информация о непосредственно измеряемых координатах (дальности, угловых положениях) формируется с помощью соответствующих дискриминаторов

Изобретение относится к области радиолокации, в частности к области сопровождения траекторий целей в обзорных радиолокационных станциях (РЛС)

Изобретение относится к радиотехнике и может быть использовано в телевизионных, радиотехнических и радиолокационных системах измерения параметров траекторий летательных аппаратов и других системах аналогичного назначения, в которых информация о непосредственно измеряемых координатах объекта сопровождения (дальности, угловых положениях) формируется с помощью соответствующих дискриминаторов

Изобретение предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением и уничтожения маневрирующих подвижных целей. Достигаемый технический результат изобретения - повышение точности и устойчивости сопровождения цели интегрированной автоматической системой сопровождения при пуске управляемой ракеты, а также проведение операций для обеспечения перезаряжания и пуска управляемых ракет при выполнении комплексом огневых задач поражения сопровождаемой пеленгаторами маневрирующей цели. Указанный результат достигается за счет того, что в систему сопровождения, содержащую функционально связанные между собой локационный и оптико-электронный пеленгаторы, формирователь логики режимов, первый, второй и третий коммутаторы, первый преобразователь координат из нестабилизированной системы координат в стабилизированную, устройство автоматического сопровождения, блок инерционного сопровождения, устройство наведения и стабилизации, блок управления оптико-электронной системы, локационный и оптико-электронный пеленгаторы механически соединены между собой и имеют кинематическую связь с выходным валом устройства наведения и стабилизации, введены первый и второй преобразователь нестабилизированных координат в стабилизированные, сглаживающий фильтр, второй и третий преобразователи стабилизированных координат в нестабилизированные, четвертый, пятый, шестой, седьмой, восьмой, девятый коммутаторы, задатчик начального положения, блок управления заряжанием ракет, гироскопический датчик угла, измеритель угловой скорости, второе устройство наведения и стабилизации, привод подъема ракет и механизм подъема ракет. Перечисленные средства определенным образом соединены между собой. 2 з.п. ф-лы, 5 ил.

Изобретение относится к космическим радиотелескопам и может быть использовано для адаптации отражающих поверхностей антенны. Технический результат заключается в повышении коэффициента использования поверхности многодиапазонных двухзеркальных антенн. Для этого по значениям положений щитов для каждого щита строят аппроксимирующий параболоид так, чтобы фокусное расстояние и положение основания каждого параболоида минимально отличалось от соседнего и при этом разности между их фокусными расстояниями были кратны длине волны принимаемого радиоизлучения, и вычисляют отклонения каждого щита от соответствующего параболоида, после окончания перемещений щитов главного зеркала измеряют положения каждого щита второго зеркала (контррефлектора), строят модель хода лучей, отраженных от щитов главного зеркала в сторону контррефлектора, и положения отражающих поверхностей щитов контррефлектора и вычисляют рассогласования крайних лучей с положениями соответствующих краев отражающих поверхностей щитов контррефлектора, и с помощью системы автоматического управления перемещают каждый щит контррефлектора в сторону уменьшения рассогласований так, чтобы положения их фокусов минимально расходились между собой и с положением вторичного фокуса зеркальной системы и (или) с положением приемника излучения при условии, что длины лучей от первичного фокуса до отражающих поверхностей щитов контррефлектора, а также длины лучей от отражающих поверхностей щитов контррефлектора до вторичного фокуса, и расхождения в обоих случаях были кратны длине волны принимаемого излучения. 3 ил.

Изобретение относится к технике пространственного наведения и сопровождения подвижных точечных объектов. Технический результат - повышение надежности захвата цели в случае редких посылок зондирующих импульсов и точности слежения за быстро летящей точечной целью. Способ управления инерционным приводом антенны, в котором формируют сигнал ошибки сопровождения по пеленгу цели вычитанием из значения оцененного сигнала пеленга цели значения оцененного сигнала угла поворота антенны и усиливают его с зависящим от свойств привода антенны, коэффициентом усиления, формируют сигналы ошибок сопровождения по всем оцениваемым в фильтре угломера производным пеленга цели вычитанием из значения оцененного сигнала каждой производной пеленга цели значения оцененного сигнала каждой производной угла поворота антенны, усиливают каждый из упомянутых сигналов ошибок сопровождения по производным пеленга цели с различными, зависящими от свойств привода антенны коэффициентами усиления и складывают их с усиленным сигналом ошибки сопровождения по пеленгу цели, образуя сигнал управления приводом антенны, при этом для образования сигнала управления приводом антенны на каждом зондирующем импульсе коэффициенты усиления меняют синхронно с посылками зондирующих импульсов. 2 з.п. ф-лы, 1 ил.
Наверх