Устройство для магнитной стимуляции

Изобретение относится к медицинской технике и может найти применение при функциональной диагностике поражений нервной системы. Устройство содержит блок питания, силовой транзистор, импульсный трансформатор, вторичная обмотка которого через выходной диод соединена с силовым конденсатором и силовой тиристор с магнитным индуктором, к выходу силового конденсатора подключены делитель напряжения и силовой тиристор, к управляющему входу силового транзистора подключен драйвер, при этом датчик тока, соединенный с силовым транзистором, своим выходом подключен к первому входу драйвера. Кроме этого устройство имеет насос, теплообменник, расширительную емкость, элементы Пельтье и радиатор, при этом индуктор изготовлен из металлической трубки, элементы Пельтье своей охлаждающей поверхностью размещены на стенке теплообменника, нагревающая поверхность элементов Пельтье соединена с радиатором, а в качестве охлаждающей жидкости выбрана жидкость с высокими диэлектрическими свойствами. Использование изобретения позволяет минимизировать температурное воздействие магнитного индуктора, нагревающегося во время магнитного стимула, и тем самым повысить информативность исследования. 1 ил.

 

Изобретение относится к медицинской технике, используемой при диагностике центральных и периферических вегетативных расстройств.

Известно устройство электромагнитного регионального однокомпонентного стимулятора [1], содержащее генератор биполярных электрических импульсов, который создает с помощью катушки индуктивности импульсы магнитного поля противоположной полярности, при этом переход от импульса одной полярности к импульсу противоположной полярности сопровождается звуковым сигналом, который создает электроакустический преобразователь. Устройство применяется для физиотерапии, но не может быть использовано для целей диагностики, поскольку форма выходных импульсов не соответствует общепринятой.

Существует устройство [2], содержащее блок питания, вырабатывающий постоянное нерегулируемое напряжение, силовой транзистор, подключенный к первичной обмотке импульсного трансформатора, вторичная обмотка которого через выходной диод соединена с силовым конденсатором. Предложенный авторами вариант выполнения устройства при своей работоспособности обладает некоторыми недостатками. Так, энергетические показатели прибора в виде коэффициента мощности достаточно низки, поскольку в процессе заряда емкости напряжение и ток не согласуются друг с другом. Кроме того, устройство не контролирует напряжение на силовой емкости, что снижает его точность.

Наиболее близким техническим решением является устройство [3], содержащее блок питания, соединенный через силовой транзистор с первичной обмоткой импульсного трансформатора, вторичная обмотка которого через выходной диод соединена с силовым конденсатором, и силовой тиристор с магнитным индуктором. К выходу силового конденсатора подключены делитель напряжения и силовой тиристор, к управляющему входу силового тиристора подключен драйвер, при этом датчик тока, соединенный с силовым транзистором, своим выходом подключен к драйверу, соединенному с блоком управления, первым и вторым датчиком напряжения, командоаппарат подключен к блоку управления. Устройство выполняет свои основные функции, однако в процессе воздействия к магнитному стимулу прибавляется термовоздействие, связанное со значительным нагревом магнитного индуктора. При этом чистота исследования снижается, поскольку ответная реакция может быть откликом организма как на воздействие магнитного поля, так и на изменение температурного режима.

Технический результат предлагаемого изобретения заключается в повышении информативности исследования путем минимизации температурного воздействия магнитного индуктора, нагревающегося во время магнитного стимула.

Такой результат достигается за счет того, что устройство для магнитной стимуляции имеет блок питания, соединенный через силовой транзистор с первичной обмоткой импульсного трансформатора, вторичная обмотка которого через выходной диод соединена с силовым конденсатором, к выходу которого подключены делитель напряжения и силовой тиристор с магнитным индуктором, к управляющему входу силового транзистора подключен драйвер, при этом датчик тока, соединенный с силовым транзистором, своим выходом подключен к первому входу драйвера, второй вход которого соединен с первым выходом блока управления, первый вход последнего соединен с выходом делителя напряжения, третий вход драйвера подключен к первому датчику напряжения, вход которого соединен с силовым транзистором, а четвертый вход драйвера соединен с выходом второго датчика напряжения, командоаппарат соединен со вторым входом блока управления, второй выход которого соединен с управляющим входом силового тиристора, а второй датчик напряжения связан с первичной обмоткой импульсного трансформатора, при этом в него введены насос, теплообменник, расширительная емкость, элементы Пельтье и радиатор, при этом насос подключен к командоаппарату, магнитный индуктор изготовлен из металлической трубки и соединен с насосом с возможностью циркуляции по трубке охлаждающей жидкости с диэлектрическими свойствами, элементы Пельтье подключены к блоку питания и установлены нагревающими поверхностями на радиаторе, а охлаждающими - на стенке теплообменника, образующего с расширительной емкостью и трубкой контур циркуляции охлаждающей жидкости.

Действие стимулятора основано на воздействии магнитного поля на центральные узлы головного или спинного мозга и получение ответной реакции с помощью специальных датчиков, размещенных на ладонях или стопах. Круглая катушка стимулятора располагается контрлатерально над зоной проекции моторной коры с учетом направления тока, протекающего в катушке. При отведении с мышц кисти необходимо обеспечить протекание тока через стимулируемое полушарие в окципито-фронтальном направлении; для этого центр круглой катушки располагается так, чтобы ток раздражения шел в направлении часовой стрелки (глядя сверху) для правой руки и наоборот - для левой. При исследовании мышц стопы данные закономерности не всегда верны, обнаруживается значительная индивидуальная вариабельность.

Регистрацию мышечного ответа допустимо проводить как с помощью поверхностных, так и концентрических игольчатых отводящих электродов.

Электромиографические ответы, полученные при магнитной стимуляции, имеют большую (на 1-2 мс) латентность, чем аналогичные реакции на транскраниальную электростимуляцию. В эксперименте доказано, что разность латенций связана с особенностями воздействия магнитного поля на нейрональные структуры. При электростимуляции мотонейроны активизируются в проекции аксонального бугорка, возбуждаются также аксоны в белом веществе, поэтому эффективность стимуляции и характеристики мышечного ответа зависят от спинального проведения и возбудимости мотонейронов на уровне передних рогов. Магнитный стимулятор воздействует преимущественно на тела центральных мотонейронов, поэтому на параметры вызванного ответа дополнительно влияют возбудимость корковых мотонейронов и состояние аксонов пирамидного пути.

В литературе отсутствуют сообщения о патоморфологических изменениях в стимулируемых тканях при использовании магнитной стимуляции. Противопоказания обусловлены потенциальной возможностью осложнений у больных после внутричерепных хирургических вмешательств (особенно связанных с установкой металлических клипс), у пациентов, имеющих в анамнезе судорожные пароксизмы, и больных, носящих биомедицинские приборы (например, сердечный пейсмейкер).

На чертеже изображена блок-схема устройства.

Устройство состоит из блока питания 1, преобразующего переменное напряжение сети в постоянное, подающееся через силовой транзистор 2 к первичной обмотке импульсного трансформатора 3, вторичная обмотка которого через выходной диод 4 соединена с силовым конденсатором 5. К выходу силового конденсатора 5 подключается делитель напряжения 6 и силовой тиристор 7. Силовой тиристор 7 соединяет силовой конденсатор 5 с магнитным индуктором 8, выполняющим роль источника магнитного поля и представляющим собой катушку индуктивности, намотанную внутри защитного изоляционного кожуха. К управляющему входу силового транзистора 2 подключен драйвер 9, получающий информацию по первому входу от датчика тока 10, по второму входу от первого выхода блока управления 11, первый вход которого соединен с выходом делителя 6, по третьему входу от первого датчика напряжения 12, вход которого подключен ко входу силового транзистора 2. Датчик тока 10, в свою очередь, соединен с выходом силового транзистора 2. Ручное управление на второй вход блока управления 11 поступает от командоаппарата 13. Второй датчик напряжения 14 подключен к первичной обмотке импульсного трансформатора 3, выход второго датчика напряжения 14 соединен с четвертым входом драйвера 9. Кроме этого второй выход блока управления 11 подключен к управляющему входу силового тиристора 7. Магнитный индуктор 8, конструктивно выполненный из металлической трубки, подключен к насосу 15, за счет действия которого по магнитному индуктору 8 циркулирует охлаждающая жидкость, запасы которой сосредоточены в расширительной емкости 16. Расширительная емкость 16 является элементом, предотвращающим нежелательные последствия, которые могут наступить при увеличении объема охлаждающей жидкости в случае ее нагрева в процессе работы устройства, поскольку уровень заполнения расширительной емкости охлаждающей жидкостью в исходном состоянии меньше максимально допустимого. При своем движении по контуру охлаждающая жидкость поступает в теплообменник 17, к стенке которого своей охлаждающей поверхностью прикреплены элементы Пельтье 18. Нагревающаяся поверхность элементов Пельтье 18 прикреплена к радиатору 19. В то же время элементы Пельтье электрически подключены к блоку питания 1.

Устройство работает следующим образом. После подключения к сети блок питания 1 подает выпрямленное напряжение на силовой транзистор 2 и элементы Пельтье 18. Первый датчик напряжения 12 формирует на своем выходе сигнал присутствия напряжения питания, который, поступая на третий вход драйвера 9, готовит его к работе. До поступления управляющих сигналов силовой транзистор 2 закрыт, и заряда силовой емкости 5 не происходит.

При подаче от командоаппарата 13 сигнала подготовки включается в работу насос 15 и подается напряжение на второй вход блока управления 11. Насос 15 начинает приводить в движение охлаждающую жидкость, которая циркулирует по контуру: расширительная емкость 16, магнитный индуктор 8, насос 15, теплообменник 17, подготавливая устройство к проведению импульса, при котором в магнитном индукторе 8 будет выделяться большое количество тепла. Блок управления 11 через свой первый выход формирует разрешающий сигнал на втором входе драйвера 9, который, в свою очередь, подает сигнал открытия на силовой транзистор 2. Силовой транзистор 2 открывается, подключая постоянное напряжение с блока питания 1 к первичной обмотке импульсного трансформатора 3. Одновременно с этим датчик тока 10 формирует на первом входе драйвера 9 сигнал, пропорциональный величине тока в первичной обмотке импульсного трансформатора 3. Этот сигнал сравнивается с сигналом от первого датчика напряжения 12 и в момент равенства этих напряжений драйвер 9 через управляющий вход силового транзистора 2 закрывает последний, что приводит к прерыванию тока первичной обмотки импульсного трансформатора 3. После этого напряжение, повышенное до нескольких киловольт, поступает от вторичной обмотки импульсного трансформатора 3 на выходной диод 4 и силовой конденсатор 5. Накопленная в импульсном трансформаторе 3 энергия начинает «разряжаться» через выходной диод 4 на силовой конденсатор 5, заряжая его. Благодаря сравнению сигнала датчика тока 10 с сигналом от первого датчика напряжения 12 потребляемый силовой схемой из сети ток пропорционален входному напряжению. Это корректирует коэффициент мощности устройства и позволяет получить улучшенные энергетические показатели.

Пока накопленная в импульсном трансформаторе 3 энергия «разряжается» через выходной диод 4 на силовой конденсатор 5, заряжая его, на втором датчике напряжения 14 присутствует сигнал, который поступает на третий вход драйвера 9, удерживая его в выключенном состоянии.

Как только вся энергия импульсного трансформатора 3 перейдет в силовой конденсатор 5, второй датчик напряжения 14 укажет на снижение сигнала, напряжение на четвертом входе драйвера 9 упадет, драйвер 9 включится и цикл повторится сначала уже без подачи ручного сигнала от командоаппарата 13. При этом насос 15 с системой охлаждения будет продолжать работу.

Величина напряжения, до которого заряжается силовой конденсатор 5, контролируется делителем напряжения 6, задача которого - служить датчиком, прекращающим процесс заряда силового конденсатора 5 после достижения заданной величины напряжения. Прекращение заряда осуществляется путем подачи на первый вход блока управления 11 сигнала запрета с делителя напряжения 6. При этом блок управления 11 через свой первый выход формирует запрещающий сигнал на втором входе драйвера 9.

При подаче от командоаппарата 13 на второй вход блока управления 11 сигнала на разряд силового конденсатора 5 на втором выходе блока управления 11 появляется напряжение, поступающее на управляющий вход силового тиристора 7, который открывается и соединяет ранее заряженный силовой конденсатор 5 с магнитным индуктором 8. Происходит разряд силового конденсатора 5 через обмотку катушки магнитного индуктора 8, вокруг катушки образуется магнитное поле заданной величины, воздействующее на выбранные исследователем зоны коры головного мозга. Образование магнитного поля сопровождается выделением большого количества тепла, и охлаждающая жидкость, находящаяся в это время в магнитном индукторе 8, нагревается. При своем движении по охлаждающему контуру за счет насоса 15 эта жидкость поступает в теплообменник 17, тепло от которого отводится элементами Пельтье 18, прикрепленными своей охлаждающей поверхностью к стенке теплообменника 17. Этот процесс происходит достаточно эффективно за счет свойства элементов Пельтье 18 отбирать тепло от одной поверхности и отдавать его другой. В качестве последней выступает радиатор 19, нагрев которого не приводит к нагреву жидкости в теплообменнике, что сказывается на скорости охлаждения магнитного индуктора 8. В то же время увеличение объема охлаждающей жидкости, связанное с ее расширением в процессе нагрева, не приводит к разрыву элементов охлаждающего контура, поскольку расширительная емкость 16 в исходном состоянии залита не полностью, что позволяет избежать нежелательных последствий. Тем самым тепловое воздействие на зону стимуляции сводится к минимуму. Поскольку к магнитному индуктору 8 во время разряда подводится высоковольтный электрический сигнал, в качестве охлаждающей выбирается жидкость с диэлектрическими свойствами, например полидиметилсилоксан.

После разряда и закрытия силового тиристора 7 начинается процесс заряда силового конденсатора 5 по алгоритму, представленному выше без останова насоса 15, который продолжает охлаждать магнитный индуктор 8.

Предлагаемое устройство позволяет минимизировать температурное воздействие магнитного индуктора, нагревающегося во время магнитного стимула, и тем самым повысить информативность исследования.

Источники информации

1. Заявка Российской Федерации ЭЛЕКТРОМАГНИТНЫЙ РЕГИОНАЛЬНЫЙ ОДНОКОМПОНЕНТНЫЙ СТИМУЛЯТОР. Земсков Б.Г., Артемов Б.В. Информационный бюллетень «Открытия, изобретения, промышленные образцы и товарные знаки».

2. Булатов О.Г. и др. ПОЛУПРОВОДНИКОВЫЕ ЗАРЯДНЫЕ УСТРОЙСТВА ЕМКОСТНЫХ НАКОПИТЕЛЕЙ ЭНЕРГИИ /О.Г.Булатов, B.C.Иванов, Д.И.Панфилов. - М.: Радио и связь, 1986 (стр.44,45, рис.3.За).

3. Патент Российской Федерации №2218194 УСТРОЙСТВО ДЛЯ МАГНИТНОЙ СТИМУЛЯЦИИ. Автор Романов Е.А., Информационный бюллетень «Открытия, изобретения, промышленные образцы и товарные знаки».

Устройство для магнитной стимуляции, содержащее блок питания, соединенный через силовой транзистор с первичной обмоткой импульсного трансформатора, вторичная обмотка которого через выходной диод соединена с силовым конденсатором, к выходу которого подключены делитель напряжения и силовой тиристор с магнитным индуктором, к управляющему входу силового транзистора подключен драйвер, при этом датчик тока, соединенный с силовым транзистором, своим выходом подключен к первому входу драйвера, второй вход которого соединен с первым выходом блока управления, первый вход последнего соединен с выходом делителя напряжения, третий вход драйвера подключен к первому датчику напряжения, вход которого соединен с силовым транзистором, а четвертый вход драйвера соединен с выходом второго датчика напряжения, командоаппарат соединен со вторым входом блока управления, второй выход которого соединен с управляющим входом силового тиристора, а второй датчик напряжения связан с первичной обмоткой импульсного трансформатора, отличающееся тем, что в него введены насос, теплообменник, расширительная емкость, элементы Пельтье и радиатор, при этом насос подключен к командоаппарату, магнитный индуктор изготовлен из металлической трубки и соединен с насосом с возможностью циркуляции по трубке охлаждающей жидкости с диэлектрическими свойствами, элементы Пельтье подключены к блоку питания и установлены нагревающими поверхностями на радиаторе, а охлаждающими - на стенке теплообменника, образующего с расширительной емкостью и трубкой контур циркуляции охлаждающей жидкости.



 

Похожие патенты:

Изобретение относится к области медицины и касается лечения больных детским церебральным параличом. .

Изобретение относится к медицине, а именно к физиотерапевтическим устройствам. .

Изобретение относится к ветеринарной медицине. .

Изобретение относится к медицинской технике и может быть использовано в физиотерапии. .

Изобретение относится к области медицины, а именно к области медицинского оборудования, применяемого при лечении различных заболеваний, и может быть использовано для повышения уровня здоровья, физических и функциональных резервов организма.
Изобретение относится к медицине и предназначено для лечения больных с прогрессирующей миопией. .

Изобретение относится к медицинской технике, в частности к аппаратам УВЧ-терапии. .

Изобретение относится к медицинской физиотерапевтической технике и может быть использовано для лечения переломов конечностей. .

Изобретение относится к медицинской технике и предназначено для лечения и профилактики заболеваний различной этиологии путем воздействия на организм пациента магнитным полем

Изобретение относится к медицине и предназначено для физиотерапии

Изобретение относится к медицине

Изобретение относится к медицинской технике, а именно к устройствам для терапии пульсирующим сигналом
Изобретение относится к области медицины, а именно неврологии и физиотерапии, и может использоваться при лечении больных с гипертонической дисциркуляторной энцефалопатией I-II стадии

Изобретение относится к медицине и предназначено для консервативного лечения анального недержания у детей

Изобретение относится к медицине

Изобретение относится к медицине, а именно к восстановительной медицине и неврологии, и может быть использовано при лечении церебральных нарушений у детей с сахарным диабетом 1 типа
Наверх