Способ длительного проведения гетерогенно катализированного частичного окисления в газовой фазе пропена в акриловую кислоту

Изобретение относится к способу длительного проведения гетерогенно катализированного частичного окисления в газовой фазе пропена в акриловую кислоту, при котором содержащую пропен, молекулярный кислород и, по меньшей мере, один инертный газ исходную реакционную газовую смесь 1, содержащую молекулярный кислород и пропен в молярном соотношении O23Н6≥1, сначала на первой стадии реакции пропускают при повышенной температуре через первый катализаторный неподвижный слой 1, катализаторы которого выполнены таким образом, что их активная масса представляет собой, по меньшей мере, один оксид мультиметаллов, содержащий молибден и/или вольфрам, а также, по меньшей мере, один из элементов группы, включающей висмут, теллур, сурьму, олово и медь, таким образом, что конверсия пропена при одноразовом проходе составляет ≥93 мол.% и связанная с этим селективность образования акролеина, а также образования побочного продукта акриловой кислоты вместе составляет ≥90 мол.%, температуру покидающей первую реакционную стадию продуктовой газовой смеси 1 посредством прямого и/или косвенного охлаждения, в случае необходимости, снижают и к продуктовой газовой смеси 1, в случае необходимости, добавляют молекулярный кислород и/или инертный газ, и после этого продуктовую газовую смесь 1 в качестве содержащей акролеин, молекулярный кислород и, по меньшей мере, один инертный газ исходной реакционной смеси 2, которая содержит молекулярный кислород и акролеин в молярном соотношении O2:C3H4O≥0,5, на второй стадии реакции при повышенной температуре пропускают через второй катализаторный неподвижный слой 2, катализаторы которого выполнены так, что их активная масса представляет собой, по меньшей мере, один оксид мультиметаллов, содержащий элементы молибден и ванадий, таким образом, что конверсия акролеина при одноразовом проходе составляет ≥90 мол.% и селективность результирующегося на обеих стадиях образования акриловой кислоты, в пересчете на превращенный пропен, составляет ≥80 мол.% и при котором в течение времени повышают температуру каждого неподвижного катализаторного слоя независимо друг от друга, при этом частичное окисление в газовой фазе, по меньшей мере, один раз прерывают и при температуре катализаторного неподвижного слоя 1 от 250 до 550°С и температуре катализаторного неподвижного слоя 2 от 200 до 450°С состоящую из молекулярного кислорода, инертного газа и, в случае необходимости, водяного пара газовую смесь G пропускают сначала через катализаторный неподвижный слой 1, затем, в случае необходимости, через промежуточный охладитель и в заключение через катализаторный неподвижный слой 2, в котором по меньшей мере одно прерывание осуществляют прежде, чем повышение температуры катализаторного неподвижного слоя 2 составляет 8°С или 10°С, причем длительное повышение температуры, составляющее 8°С или 10°С, имеется тогда, когда при нанесении фактического протекания температуры катализаторного неподвижного слоя в течение времени на проложенной через точки измерения уравнительной кривой по разработанному Лежандром и Гауссом методу наименьшей суммы квадратов погрешностей достигнуто повышение температуры 8°С или 10°С. Способ позволяет увеличить срок службы катализатора. 23 з.п. ф-лы, 3 ил.

 

Текст описания приведен в факсимильном виде.

1. Способ длительного проведения гетерогенно катализированного частичного окисления в газовой фазе пропена в акриловую кислоту, при котором содержащую пропен, молекулярный кислород и, по меньшей мере, один инертный газ исходную реакционную газовую смесь 1, содержащую молекулярный кислород и пропен в молярном соотношении O23Н6≥1, сначала на первой стадии реакции пропускают при повышенной температуре через первый катализаторный неподвижный слой 1, катализаторы которого выполнены таким образом, что их активная масса представляет собой, по меньшей мере, один оксид мультиметаллов, содержащий молибден и/или вольфрам, а также, по меньшей мере, один из элементов группы, включающей висмут, теллур, сурьму, олово и медь, таким образом, что конверсия пропена при одноразовом проходе составляет ≥93 мол.% и связанная с этим селективность образования акролеина, а также образования побочного продукта акриловой кислоты вместе составляет ≥90 мол.%, температуру покидающей первую реакционную стадию продуктовой газовой смеси 1 посредством прямого и/или косвенного охлаждения, в случае необходимости, снижают и к продуктовой газовой смеси 1, в случае необходимости, добавляют молекулярный кислород и/или инертный газ, и после этого продуктовую газовую смесь 1 в качестве содержащей акролеин, молекулярный кислород и, по меньшей мере, один инертный газ исходной реакционной смеси 2, которая содержит молекулярный кислород и акролеин в молярном соотношении О2:C3H4O≥0,5, на второй стадии реакции при повышенной температуре пропускают через второй катализаторный неподвижный слой 2, катализаторы которого выполнены так, что их активная масса представляет собой, по меньшей мере, один оксид мультиметаллов, содержащий элементы молибден и ванадий, таким образом, что конверсия акролеина при одноразовом проходе составляет ≥90 мол.% и селективность результирующегося на обеих стадиях образования акриловой кислоты, в пересчете на превращенный пропен, составляет ≥80 мол.% и при котором в течение времени повышают температуру каждого неподвижного катализаторного слоя независимо друг от друга, при этом частичное окисление в газовой фазе, по меньшей мере, один раз прерывают и при температуре катализаторного неподвижного слоя 1 от 250 до 550°С и температуре катализаторного неподвижного слоя 2 от 200 до 450°С состоящую из молекулярного кислорода, инертного газа и, в случае необходимости, водяного пара газовую смесь G пропускают сначала через катализаторный неподвижный слой 1, затем, в случае необходимости, через промежуточный охладитель и в заключение через катализаторный неподвижный слой 2, отличающийся тем, что по меньшей мере одно прерывание осуществляют прежде, чем повышение температуры катализаторного неподвижного слоя 2 составляет 8 или 10°С, причем длительное повышение температуры, составляющее 8 или 10°С, имеется тогда, когда при нанесении фактического протекания температуры катализаторного неподвижного слоя в течение времени на проложенной через точки измерения уравнительной кривой по разработанному Лежандром и Гауссом методу наименьшей суммы квадратов погрешностей достигнуто повышение температуры 8 или 10°С.

2. Способ по п.1, отличающийся тем, что время, в течение которого газовую смесь G пропускают через катализаторные неподвижные слои, составляет от 2 до 120 ч.

3. Способ по п.1, отличающийся тем, что газовая смесь G, которую пропускают через катализаторные неподвижные слои, содержит, по меньшей мере, 4 об.% кислорода.

4. Способ по п.1, отличающийся тем, что активная масса катализаторов катализаторного неподвижного слоя 1 представляет собой, по меньшей мере, один оксид мультиметаллов общей формулы I,

в которой переменные имеют следующее значение:
X1 = никель и/или кобальт,
Х2 = таллий, щелочной металл и/или щелочноземельный металл,
X3 = цинк, фосфор, мышьяк, бор, сурьма, олово, церий, свинец и/или вольфрам,
X4 = кремний, алюминий, титан и/или цирконий,
а=0,5 до 5,
b=0,01 до 5, предпочтительно 2 до 4,
с=0 до 10, предпочтительно 3 до 10,
d=0 до 2, предпочтительно 0,02 до 2,
е=0 до 8, предпочтительно 0 до 5,
f=0 до 10 и
n = означает число, которое определяется валентностью и количеством отличных от кислорода элементов в формуле I.

5. Способ по п.1, отличающийся тем, что активная масса катализаторов катализаторного неподвижного слоя 2 представляет собой, по меньшей мере, один оксид мультиметаллов общей формулы IV,

в которой переменные имеют следующее значение:
X1=W, Nb, Та, Cr и/или Се,
X2=Cu, Ni, Co, Fe, Mn и/или Zn,
X3=Sb и/или Bi,
X4 = один или несколько щелочных металлов,
X5 = один или несколько щелочноземельных металлов,
X6=Si, Al, Ti и/или Zr,
а=1 до 6,
b=0,2 до 4,
с=0,5 до 18,
d=0 до 40,
е=0 до 2,
f=0 до 4,
g=0 до 40 и
n = означает число, определяемое валентностью и количеством отличных от кислорода элементов в IV.

6. Способ по п.1, отличающийся тем, что нагрузка пропеном катализаторного неподвижного слоя 1 составляет ≥90 нл/л·ч.

7. Способ по п.1, отличающийся тем, что нагрузка пропеном катализаторного неподвижного слоя 1 составляет ≥130 нл/л·ч.

8. Способ по п.1, отличающийся тем, что содержание пропена в реакционной исходной газовой смеси 1 составляет от 7 до 15 об.%.

9. Способ по п.1, отличающийся тем, что содержание пропена в реакционной исходной газовой смеси 1 составляет от 8 до 12 об.%.

10. Способ по п.1, отличающийся тем, что содержание акролеина в реакционной исходной газовой смеси 2 составляет от 6 до 15 об.%.

11. Способ по одному из пп.1-10, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 1 в течение времени осуществляют таким образом, что содержание пропена в продуктовой газовой смеси 1 первой реакционной стадии не превышает 10000 вес. млн.ч.

12. Способ по одному из пп.1-10, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 1 в течение времени осуществляют таким образом, что конверсия пропена при одноразовом проходе реакционной газовой смеси 1 через катализаторный неподвижный слой 1 не опускается ниже 94 мол.%.

13. Способ по одному из пп.1-10, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 2 в течение времени осуществляют таким образом, что содержание акролеина в продуктовой газовой смеси второй реакционной стадии не превышает 1500 вес. млн.ч.

14. Способ по п.11, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 2 в течение времени осуществляют таким образом, что содержание акролеина в продуктовой газовой смеси второй реакционной стадии не превышает 1500 вес. млн.ч.

15. Способ по п.12, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 2 по времени осуществляют таким образом, что содержание акролеина в продуктовой газовой смеси второй реакционной стадии не превышает 1500 вес. млн.ч.

16. Способ по одному из пп.1-10, 14 и 15, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 2 в течение времени осуществляют таким образом, что конверсия акролеина при одноразовом проходе реакционной газовой смеси через катализаторный неподвижный слой 2 не снижается ниже 92 мол.%.

17. Способ по п.11, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 2 в течение времени осуществляют таким образом, что конверсия акролеина при одноразовом проходе реакционной газовой смеси через катализаторный неподвижный слой 2 не снижается ниже 92 мол.%.

18. Способ по п.12, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 2 в течение времени осуществляют таким образом, что конверсия акролеина при одноразовом проходе реакционной газовой смеси через катализаторный неподвижный слой 2 не снижается ниже 92 мол.%.

19. Способ по п.13, отличающийся тем, что повышение температуры катализаторного неподвижного слоя 2 по времени осуществляют таким образом, что конверсия акролеина при одноразовом проходе реакционной газовой смеси через катализаторный неподвижный слой 2 не снижается ниже 92 мол.%.

20. Способ по одному из пп.1-10, 14, 15 и 17-19, отличающийся тем, что обе реакционные стадии осуществляют в одном кожухотрубном реакторе.

21. Способ по п.11, отличающийся тем, что обе реакционные стадии осуществляют в одном кожухотрубном реакторе.

22. Способ по п.12, отличающийся тем, что обе реакционные стадии осуществляют в одном кожухотрубном реакторе.

23. Способ по п.13, отличающийся тем, что обе реакционные стадии осуществляют в одном кожухотрубном реакторе.

24. Способ по п.16, отличающийся тем, что обе реакционные стадии осуществляют в одном кожухотрубном реакторе.



 

Похожие патенты:

Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина реакцией газофазного каталитического окисления, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, имеющего такую конструкцию, что имеется множество реакционных труб, снабженных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, и снаружи указанных реакционных труб может течь теплоноситель для регулирования температуры реакции, в котором изменение по повышению температуры указанной реакции газофазного каталитического окисления проводится путем изменения температуры теплоносителя на впуске для регулирования температуры реакции, наряду с тем, что (1) изменение температуры теплоносителя на впуске для регулирования температуры реакции проводится не более чем на 2°С для каждой операции изменения как таковой, (2) когда операция изменения проводится непрерывно, операция изменения проводится так, что интервал времени от операции изменения, непосредственно предшествующей данной, составляет не менее 10 мин и, кроме того, разность между максимальным значением пиковой температуры реакции каталитического слоя реакционной трубы и температурой теплоносителя на впуске для регулирования температуры реакции составляет не менее 20°С.

Изобретение относится к усовершенствованному способу проведения гетерогенно каталитического частичного окисления в газовой фазе акролеина в акриловую кислоту, при котором исходную реакционную газовую смесь, содержащую акролеин, молекулярный кислород и, по меньшей мере, один инертный газ-разбавитель, пропускают через находящийся при повышенной температуре катализаторный неподвижный слой, катализаторы которого выполнены так, что их активная масса содержит, по меньшей мере, один оксид мультиметалла, который содержит элементы Мо и V, и при котором в течение времени повышают температуру катализаторного неподвижного слоя, при этом частичное окисление в газовой фазе прерывают, по меньшей мере, один раз и при температуре катализаторного неподвижного слоя от 200 до 450°С через него пропускают свободную от акролеина, содержащую молекулярный кислород, инертный газ и, в случае необходимости, водяной пар, а также, в случае необходимости, СО, газовую смесь G окислительного действия, причем, по меньшей мере, одно прерывание осуществляют прежде, чем повышение температуры катализаторного неподвижного слоя составляет длительно 2°С, или 4°С, или 8°С, или 10°С, причем длительное повышение температуры, составляющее 2°С, или 4°С, или 8°С, или 10°С имеется тогда, когда при нанесении фактического протекания температуры катализаторного неподвижного слоя в течение времени на проложенной через точки измерения уравнительной кривой по разработанному Лежандром и Гауссом методу наименьшей суммы квадратов погрешностей достигнуто повышение температуры 2°С, или 4°С, или 8°С, или 10°С.

Изобретение относится к усовершенствованному способу получения (мет)акролеина и/или (мет)акриловой кислоты путем гетерогенного каталитического частичного окисления в газовой фазе, при котором находящийся в реакторе свежий неподвижный слой катализатора при температуре 100-600°С нагружают смесью загрузочного газа, которая наряду с, по меньшей мере, одним подлежащим частичному окислению С3/С4 органическим соединением-предшественником и окислителем - молекулярным кислородом содержит, по меньшей мере, один газ-разбавитель, причем процесс осуществляют после установки состава смеси загрузочного газа при неизменной конверсии органического соединения-предшественника и при неизменном составе смеси загрузочного газа сначала во входном периоде в течение 3-10 дней при нагрузке от 40 до 80% от более высокой конечной нагрузки, а затем при более высокой нагрузке засыпки катализатора смесью загрузочного газа, причем во входном периоде максимальное отклонение конверсии органического соединения-предшественника от арифметически усредненной по времени конверсии и максимальное отклонение объемной доли одного из компонентов смеси загрузочного газа, окислителя, органического соединения-предшественника и газа-разбавителя, от арифметически усредненной по времени объемной доли соответствующего компонента смеси загрузочного газа не должны превышать ±10% от соответствующего арифметического среднего значения.

Изобретение относится к установке для получения (мет)акриловой кислоты, которая включает в себя: реактор для получения (мет)акриловой кислоты посредством реакции газофазного каталитического окисления одного, двух или большего количества исходных соединений, включающих пропан, пропилен, изобутилен и (мет)акролеин, в газовой смеси исходных веществ, содержащей одно, два или большее количество исходных соединений, включающих пропан, пропилен, изобутилен и (мет)акролеин, и кислорода; соединенный с реактором теплообменник, предназначенный для охлаждения реакционной газовой смеси, содержащей полученную (мет)акриловую кислоту; и соединенную с теплообменником абсорбционную башню, предназначенную для контактирования поглощающей жидкости, с целью абсорбции (мет)акриловой кислоты, и реакционной газовой смеси таким образом, что (мет)акриловая кислота из реакционной газовой смеси абсорбируется поглощающей жидкостью, при этом установка дополнительно содержит: обводную трубу, предназначенную для соединения реактора и абсорбционной башни без использования промежуточного теплообменника; и устройство, регулирующее скорость потока, предназначенное для регулирования скорости потока реакционной газовой смеси, которая течет по обводной трубе; где устройство, предназначенное для регулирования скорости потока, регулирует скорость потока реакционной газовой смеси, которая течет по обводной трубе, таким образом, чтобы обеспечить практически постоянную скорость подачи газовой смеси исходных веществ в реактор, или практически постоянное давление газовой смеси исходных веществ на входе в реактор.

Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина, по которому с использованием многотрубчатого реактора с неподвижным слоем, имеющего конструкцию, которая имеет множество реакционных трубок, снабженных, по меньшей мере, одним слоем катализатора в направлении оси трубки, и предоставлением возможности теплоносителю регулировать температуры внешней стороны потока реакционной трубки, в реакционных трубках осуществляют газофазное каталитическое окисление, по меньшей мере, одного вида окисляемого вещества, пропилена, пропана, изобутилена и (мет)акролеина молекулярным кислородом или газом, содержащим молекулярный кислород, причем в начале процесса температурное различие между температурой теплоносителя и пиковой температурой катализатора устанавливают в интервале от 20 до 80°С, и во время процесса пиковая температура Т(°С) катализатора в направлении оси трубки удовлетворяет нижеприведенному уравнению 1: в котором L, Т0, X и Х 0 соответственно обозначает длину реакционной трубки, пиковую температуру катализатора в направлении оси трубки в начале процесса, длину вплоть до положения, которое показывает пиковая температура Т у входа реакционной трубки, и длину вплоть до положения, которое показывает пиковую температуру Т0 у входа реакционной трубки.

Изобретение относится к усовершенствованному способу изготовления акриловой кислоты и избирательного окисления пропилена в акролеин, который предусматривает проведение реакции пропилена и кислорода в первой зоне реакции, имеющей первый катализатор, который соответствует следующей формуле: AaBbCcCa dFeeBifMo12Ox , в которой А = Li, Na, К, Rb и Cs, а также их смеси, В = Mg, Sr, Mn, Ni, Co и Zn, а также их смеси, С = Се, Cr, Al, Sb, Р, Ge, Sn, Cu, V и W, а также их смеси, причем а = 0.01-1.0; b и е = 1.0-10; с = 0-5.0, преимущественно 0.05-5.0; d и f = 0.05-5.0; х представляет собой число, определяемое валентностью других присутствующих элементов; при повышенной температуре, позволяющей получить акриловую кислоту и акролеин, и последующее введение по меньшей мере акролеина из первой зоны реакции во вторую зону реакции, содержащую второй катализатор, служащий для преобразования акролеина в акриловую кислоту.

Изобретение относится к каталитической химии, в частности к катализаторам (КТ) для получения акриловой кислоты, и может быть использовано в химической промышленности.

Изобретение относится к усовершенствованному способу проведения гетерогенно каталитического частичного окисления в газовой фазе акролеина в акриловую кислоту, при котором исходную реакционную газовую смесь, содержащую акролеин, молекулярный кислород и, по меньшей мере, один инертный газ-разбавитель, пропускают через находящийся при повышенной температуре катализаторный неподвижный слой, катализаторы которого выполнены так, что их активная масса содержит, по меньшей мере, один оксид мультиметалла, который содержит элементы Мо и V, и при котором в течение времени повышают температуру катализаторного неподвижного слоя, при этом частичное окисление в газовой фазе прерывают, по меньшей мере, один раз и при температуре катализаторного неподвижного слоя от 200 до 450°С через него пропускают свободную от акролеина, содержащую молекулярный кислород, инертный газ и, в случае необходимости, водяной пар, а также, в случае необходимости, СО, газовую смесь G окислительного действия, причем, по меньшей мере, одно прерывание осуществляют прежде, чем повышение температуры катализаторного неподвижного слоя составляет длительно 2°С, или 4°С, или 8°С, или 10°С, причем длительное повышение температуры, составляющее 2°С, или 4°С, или 8°С, или 10°С имеется тогда, когда при нанесении фактического протекания температуры катализаторного неподвижного слоя в течение времени на проложенной через точки измерения уравнительной кривой по разработанному Лежандром и Гауссом методу наименьшей суммы квадратов погрешностей достигнуто повышение температуры 2°С, или 4°С, или 8°С, или 10°С.
Изобретение относится к усовершенствованному способу получения акролеина, или акриловой кислоты, или их смеси, при котором А) на первой стадии А пропан подвергают парциальному гетерогенному катализированному дегидрированию в газовой фазе с образованием газовой смеси А продукта, содержащей молекулярный водород, пропилен, не превращенный пропан и отличные от пропана и пропена компоненты, из содержащихся в газовой смеси А - продукта стадии А отличных от пропана и пропилена компонентов выделяют, по меньшей мере, частичное количество молекулярного водорода и смесь, полученную после указанного выделения, применяют в качестве газовой смеси А' на второй стадии В для загрузки, по меньшей мере, одного реактора окисления и в, по меньшей мере, одном реакторе окисления пропилен подвергают селективному гетерогенному катализированному газофазному парциальному окислению молекулярным кислородом с получением в качестве целевого продукта газовой смеси В, содержащей акролеин, или акриловую кислоту, или их смеси, и С) от получаемой в рамках парциального окисления пропилена на стадии В газовой смеси В на третьей стадии С отделяют акролеин, или акриловую кислоту, или их смеси в качестве целевого продукта и, по меньшей мере, содержащийся в газовой смеси стадии В не превращенный пропан возвращают на стадию дегидрирования А, в котором в рамках парциального окисления пропилена на стадии В применяют молекулярный азот в качестве дополнительного газа-разбавителя.

Изобретение относится к промышленному производству (мет)акриловых кислот со снижением количества промышленных отходов. .

Изобретение относится к усовершенствованному способу удаления формальдегида или его аддуктов из жидкой органической смеси, полученной при производстве метилметакрилата, содержащей по меньшей мере карбоновую кислоту или сложный эфир карбоновой кислоты и формальдегид или его аддукты, которая образует двухфазную смесь с водой, включающему по меньшей мере одну экстракцию жидкой органической смеси в системе жидкость-жидкость с использованием воды в качестве экстрагента с получением потока органической фазы и потока водной фазы, при этом поток органической фазы содержит значительно уменьшенную концентрацию формальдегида или его аддуктов по сравнению с жидкой органической смесью.

Изобретение относится к усовершенствованному способу получения метилметакрилата, включающему стадии (i) взаимодействия пропионовой кислоты или ее эфира с формальдегидом или его предшественником в реакции конденсации с образованием потока газообразных продуктов, содержащего метилметакрилат, остаточные реагенты, метанол и побочные продукты, (ii) обработки, по меньшей мере, одной порции потока газообразных продуктов с образованием потока жидких продуктов, содержащего практически весь метилметакрилат и, по меньшей мере, одну примесь, которая плавится при температуре выше температуры плавления чистого метилметакрилата, выполнения над потоком жидких продуктов, по меньшей мере, одной операции дробной кристаллизации, которая содержит стадии (iii) охлаждения указанного потока жидких продуктов до температуры между примерно -45oС и примерно -95oС так, что указанный поток жидких продуктов образует кристаллы твердого метилметакрилата и маточную жидкость, причем указанные кристаллы имеют более высокую долю содержания метилметакрилата, чем указанный поток жидких продуктов или маточная жидкость, (iv) отделение указанных кристаллов твердого метилметакрилата от указанной маточной жидкости, (v) плавление указанных кристаллов с образованием жидкого метилметакрилата, который содержит указанные примеси в более низкой концентрации, чем указанный поток жидких продуктов.

Изобретение относится к получению этиленненасыщенных кислот или их сложных эфиров. .

Изобретение относится к способу получения высокочистой акриловой кислоты (варианты) с остаточным содержанием альдегидов менее 10 частей/млн. .

Изобретение относится к термическому способу разделения фракционной конденсацией смеси продукт-газа, полученного гетерогенным катализированным частичным окислением в газовой фазе пропена и/или пропана до акриловой кислоты, для отделения, по меньшей мере, одного массового потока, обогащенного акриловой кислотой, из смеси продукт-газа, содержащего акриловую кислоту, который включает непрерывную стационарную эксплуатацию, по меньшей мере, одного устройства для термического разделения, содержащего, по меньшей мере, одну эффективную разделительную камеру с ректификационной колонной имеющей массообменные тарелки в качестве встроенных разделительных элементов, в которую загружают смесь продукт-газа, содержащего акриловую кислоту, в качестве, по меньшей мере, одного массового потока, содержащего акриловую кислоту, и из которого выгружают, по меньшей мере, один массовый поток, содержащий акриловую кислоту, при условии, что массовый поток, который в общем загружают в эффективную разделительную камеру и получают путем сложения загружаемых в эффективную разделительную камеру отдельных массовых потоков, содержит X вес.% отличных от акриловой кислоты компонентов, массовый поток, который выгружают из эффективной разделительной камеры с наибольшей долей акриловой кислоты, содержит Y вес.% отличных от акриловой кислоты компонентов, соотношение X:Y составляет 5, эффективная разделительная камера, за исключением места загрузки и места выгрузки потока, ограничивается твердой фазой и содержит, кроме массообменных тарелок в качестве встроенных разделительных элементов в ректификационной колонне, по меньшей мере, один циркуляционный теплообменник, и общий объем камеры, заполненный жидкой фазой, составляет 1 м3, причем температура жидкой фазы, по меньшей мере, частично составляет 80°С, при разделении эффективной разделительной камеры на n индивидуальных объемных элементов, причем самая высокая и самая низкая температуры находящейся в отдельном объемном элементе жидкой фазы различаются не более чем на 2°С, а объемный элемент в эффективной разделительной камере является сплошным, общее время пребывания tобщ 20 ч,причем А=(Тi-То )/10°С, То=100°С, Ti=среднее арифметическое значение из самой высокой и самой низкой температуры объемного элемента i в жидкой фазе в °С, msi = общая масса акриловой кислоты, содержащаяся в объеме жидкой фазы объемного элемента i,mi = общее количество выгружаемого из объемного элемента i потока жидкофазной массы, и при условии, что объемные элементы i с содержащейся в них жидкофазной массой mi и в качестве объемных элементов с мертвой зоной также не включены в сумму всех объемных элементов i, как и объемные элементы i, которые не содержат жидкую фазу, и общее количество жидкой фазы, содержащейся в объемных элементах с мертвой зоной, составляет не более 5 вес.% от общего количества жидкой фазы, содержащейся в эффективной разделительной камере.
Наверх