Способ создания момента вращения

Способ предназначен для обеспечения вращательного движения, преимущественно, в транспортных средствах. Способ заключается в том, что на цилиндрический диэлектрик, коаксиально насаженный через цилиндрический электрод и электроизоляцию на вал и обладающий магнитными свойствами, воздействуют постоянным магнитным и пульсирующим электрическим полями, силовые линии которых в зоне взаимодействия скрещиваются так, что возникающая сила Ампера направлена по касательной к каждому поперечному сечению диэлектрика, создавая момент вращения. В качестве источника магнитного поля используют короткозамкнутый заряженный постоянным электрическим током соленоид с обмоткой из сверхпроводящего материала, а для создания пульсирующего электрического поля - два электрода, коаксиально охватывающих диэлектрик и запитываемых от генератора пульсирующего напряжения. Изобретение позволяет увеличить ток, создающий магнитное поле, и создать соответственно большие моменты вращения. 3 ил.

 

Изобретение относится к области обеспечения движения машин и механизмов главным образом транспортных средств.

Известен способ получения тяги (патент РФ 2172865, кл. F03Н 5/00, 27.08.2001, бюл. №24), заключающийся в том, что электрически изолированные источники электрического и магнитного полей с подключенными к ним источниками электрического тока устанавливают с возможностью взаимодействия этих полей. При этом источник электрического поля выполняют в виде металлических обкладок, установленных на двух противоположных сторонах плоского или цилиндрического сердечника из магнитного диэлектрического материала, прикрепляют к нему источник магнитного поля и синфазно или в противофазе изменяют величину магнитного поля и скорость изменения электрического поля. Общим признаком для данного аналога и заявляемого способа является использование для создания силы магнитного поля, индуцированного током и взаимодействующего с электрическим полем.

Этот способ обладает рядом недостатков, а именно:

- источник магнитного поля порождает вокруг себя высокочастотное электромагнитное излучение, которое воздействует на металлические проводящие обкладки источника электрического поля. В результате в них возникают вихревые токи, что ведет к дополнительным тепловым потерям, ограничивает используемые мощности, ослабляет воздействие магнитного поля на сердечник;

- применяемая конфигурация источников полей затрудняет использование данного способа для создания момента вращения.

Известны способ создания силы и устройство для создания силы (патент РФ 2287085, кл. F03Н 5/00, 10.11.2006, бюл. №31), заключающийся в том, что на изолятор, обладающий диэлектрическими и магнитными свойствами, одновременно воздействуют переменным магнитным и переменным электрическим полями, силовые линии которых в зоне взаимодействия скрещиваются. Поля изменяются по гармоническому закону со сдвигом фазы электрического поля по отношению, магнитному на четверть периода так, чтобы сила Лоренца, возникающая в результате взаимодействия полей, была направлена всегда в одну сторону. В качестве источника магнитного поля используют индуктор, выполненный в виде протяженного электропроводящего стержня, в котором создают переменный электрический ток, а для создания электрического поля применяют электрод, установленный с возможностью электромагнитного взаимодействия с индуктором магнитного поля, выполненный в виде электропроводящей оболочки, эквидистантной по отношению к боковой поверхности индуктора и изолированной от него изолятором, обладающим магнитными свойствами. Для создания электрического поля между индуктором и электродом на электрод подают переменное напряжение относительно индуктора магнитного поля. Принят за прототип.

Недостатки прототипа. В данном способе переменный ток смещения, возникающий между электродом и индуктором, создает переменное высокочастотное магнитное поле. При воздействии высокочастотным магнитным полем на металлический индуктор в нем возникают вихревые токи, что ведет к дополнительным тепловым потерям. Вихревые токи возникают также и в самом индукторе - металлическом стержне, т.к. по нему пропускается переменный ток - источник переменного магнитного поля. Ко второму недостатку следует отнести получение слабых магнитных полей при применении проводников с прямым током, а следовательно, и малых моментов вращения. Кроме того, применяемая схема размещения источников полей затрудняет создание момента вращения.

Технический результат заявляемого изобретения состоит в том, чтобы предложить способ создания момента вращения, который позволяет разработать устройства, отличающиеся от аналогов высоким значением момента вращения по отношению к массе и габаритам устройства, простотой его создания, минимизацией потерь на электромагнитное излучение и вихревые токи и минимизацией затрат на поддержание этого вращения.

Технический результат достигается тем, что на цилиндрический диэлектрик, коаксиально насаженный через цилиндрический электропроводящий электрод и электроизоляцию на вал и обладающий магнитными свойствами, воздействуют постоянным магнитным и пульсирующим электрическим полями, силовые линии которых в зоне взаимодействия скрещиваются так, что сила Ампера, возникающая в результате взаимодействия полей, направлена в одну сторону по касательной к каждому поперечному сечению диэлектрика, создавая момент вращения; в качестве источника магнитного поля используют короткозамкнутый заряженный постоянным электрическим током соленоид с обмоткой из высокотемпературного сверхпроводящего материала, а для создания пульсирующего электрического поля применяют два цилиндрических электропроводящих электрода с радиальными токопроводящими перемычками между ними, аксиально охватывающих цилиндрический диэлектрик и запитываемых от генератора пульсирующего напряжения.

Изобретение поясняется чертежами: Фиг.1, Фиг.2 и Фиг.3.

На Фиг.1 цифрами обозначены: 1 - металлический вал; 2 - электроизоляция вала от электрода; 3 - первый электропроводящий цилиндрический электрод; 4 - цилиндрический диэлектрик, обладающий магнитными свойствами; 5 - второй электропроводящий цилиндрический электрод; 6 - воздушный зазор между вторым электродом и соленоидом; 7 - криостат с жидким азотом; 8 - обмотка соленоида и высокотемпературного сверхпроводящего материала; 9 - генератор пульсирующего однополярного напряжения, подаваемого на электроды 3 и 5; 10 - криогенератор, поддерживающий в криостате 7 температуру жидкого азота (77 К).

На Фиг.2 обозначены: В - вектор индукции постоянного магнитного поля соленоида; q - связанный заряд в диэлектрике; - скорость движения связанного заряда q при подаче на электроды пульсирующего напряжения; - вектор силы Лоренца, действующий со стороны магнитного поля на движущийся связанный заряд в диэлектрике; - ток, протекающий по перемычке при приложении напряжения на электроды; - сила Ампера, действующая со стороны магнитного поля на ток в радиальной перемычке.

На Фиг.3 обозначены: Fa - сила Ампера, равнодействующая всех сил Лоренца, действующих на движущиеся связанные заряды диэлектрика и свободные заряды радиальных перемычек со стороны постоянного магнитного поля соленоида; Famax - максимальное значение равнодействующей силы Ампера; Facp - среднее значение равнодействующей силы Ампера, создающей крутящий момент; τп - время релаксации, равное продолжительности движения зарядов от момента подачи внешнего электрического поля до равновесного их состояния; Т - период подачи электрического поля одного направления.

Для создания момента вращения на цилиндрический диэлектрик с радиальными токопроводящими перемычками, обладающий магнитными свойствами, непрерывно воздействуют постоянным магнитным полем и периодически с некоторой частотой электрическим полем одного направления. Силовые линии полей в зоне взаимодействия скрещиваются. Силы Лоренца, возникающие в результате взаимодействия магнитного поля на движущиеся в одном направлении (в соответствии с периодически прикладываемым электрическим полем) связанные заряды в диэлектрике, и силы Ампера, возникающие в токопроводящих перемычках диэлектрика, направлены по касательным к сечениям цилиндрического диэлектрика (Фиг.2) и создают момент вращения. В качестве источника постоянного магнитного поля используют короткозамкнутый соленоид с обмоткой из высокотемпературного сверхпроводящего материала азотного температурного уровня (77 К). Сверхпроводящий соленоид не требует непрерывной подачи электрического тока, поскольку подключенный к нему однажды от источника питания электрический ток циркулирует в нем бесконечно долго, если поддерживать температуру сверхпроводника не выше критической (77 К) [Бертинов А.И., Алиевский Б.Л., Илюшин К.В. и др. Сверхпроводниковые электрические машины и магнитные системы. Учебное пособие для ВУЗов по специальности «Электромеханика». Под ред. Алиевского Б.Л. Москва. МАИ. 1993]. Для целей компенсации теплопритоков (внешних - от окружающей среды и внутренних - через воздушный зазор от вращающегося диэлектрика) к сверхпроводящей обмотке соленоида служит криогенератор (10), поддерживающий в криостате (7), в который помещена сверхпроводящая обмотка соленоида (8), температуру жидкого азота (7 К). Для создания в диэлектрике пульсирующего электрического поля применяют два электропроводящих электрода, установленных с возможностью взаимодействия с магнитным полем соленоида, на которые периодически подают напряжение одной полярности. Один электрод коаксиально посажен через электрическую изоляцию на металлический вал, а второй также коаксиально посажен на цилиндрический диэлектрик, находящийся внутри соленоида и, в свою очередь, коаксиально охватывающий первый электрод. Между электродами в диэлектрике установлены радиальные токопроводящие перемычки.

Отличием заявляемого способа от прототипа является то, что в заявляемом способе используется постоянное магнитное поле с большим значением индукции (благодаря на порядок большим токам в сверхпроводящей обмотке соленоида с практически нулевым сопротивлением) и пульсирующее электрическое поле одного направления, что исключает возникновение вихревых токов и связанных с ними тепловых потерь.

Кроме того, в заявляемом способе используется более простая промышленно применимая схема создания крутящего момента.

Основным преимуществом заявляемого способа является то, что в нем в качестве источника постоянного магнитного поля используется короткозамкнутый соленоид со сверхпроводящей обмоткой, имеющей нулевое сопротивление, что позволяет на порядок увеличить ток, создающий магнитное поле, а значит, и создать соответственно большие моменты вращения.

Способ создания момента вращения, заключающийся в том, что на цилиндрический сплошной диэлектрик, коаксиально насаженный через цилиндрический электропроводящий электрод и электроизоляцию на вал и обладающий магнитными свойствами, воздействуют постоянным магнитным и пульсирующим электрическим полями, силовые линии которых в зоне взаимодействия скрещиваются так, что сила Ампера, возникающая в результате взаимодействия полей, направлена в одну сторону по касательной к каждому поперечному сечению диэлектрика, создавая момент вращения, отличающийся тем, что в качестве источника магнитного поля используют короткозамкнутый заряженный постоянным электрическим током соленоид с обмоткой из высокотемпературного сверхпроводящего материала, а для создания пульсирующего электрического поля применяют два цилиндрических электропроводящих электрода с токопроводящими радиальными перемычками между ними, коаксиально охватывающих цилиндрический диэлектрик, запитываемых от генератора пульсирующего напряжения.



 

Похожие патенты:

Изобретение относится к области ракетной техники, а именно к ракетным двигателям с ядерным источником нагревания рабочего тела - ядерным реактором, и может найти применение в аэрокосмических самолетах (АКС).

Изобретение относится к электротехнике и может быть использовано в космонавтике для создания реактивной тяги. .

Изобретение относится к области обеспечения движения машин и механизмов, например транспортных средств

Изобретение относится к области судостроения

Изобретение относится к устройствам для преобразования энергии волн, в частности для преобразования энергии колебания судна в гидрореактивную энергию

Изобретение относится к области реактивной техники, в частности к вихревым установкам, и может быть использовано в качестве тягового устройства для транспортных систем

Изобретение относится к инерционным двигателям, выполненным с возможностью создания реактивной тяги

Изобретение относится к области реактивных движителей. Центробежный движитель содержит вращающийся относительно оси вращения ротор и связанный с ним невращающийся относительно оси вращения ротора корпус с каналами в роторе и корпусе для прохождения по этим каналам рабочего вещества. Каналы ротора имеют входные концы для подачи в них рабочего вещества, наименее удаленные от оси вращения, и выходные концы, наиболее удаленные от оси вращения ротора. Каналы равномерно расположены по окружности относительно оси вращения ротора. Выходные концы каналов ротора расположены по отношению к входным концам каналов корпуса таким образом, что имеется возможность при вращении ротора направлять рабочее вещество непосредственно из выходных концов каналов ротора во входные концы каналов корпуса, равномерно расположенных по окружности относительно оси вращения ротора. Максимальная высота сечений входных концов каналов корпуса больше или равна максимальной высоте сечений выходных концов каналов ротора в плоскости, проходящей через ось вращения ротора. Собственные оси входных концов каналов корпуса направлены к ротору под углом, обеспечивающим минимальные потери скоростного напора рабочего вещества, исходящего от ротора к корпусу. Собственные оси выходных концов каналов корпуса направлены вдоль одного направления с возможным отклонением их относительно друг друга не более 45 градусов. Техническим результатом является повышение эффективности использования энергии, передаваемой рабочему веществу, повышение КПД и расширение областей применения устройства. 5 з.п. ф-лы, 8 ил.

Устройство для подачи пылеобразного рабочего тела в электроракетный двигатель относится к области электрических ракетных двигателей (ЭРД), в которых используют пыль в качестве рабочего тела для создания тяги. В устройстве для подачи пылеобразного рабочего тела в электроракетный двигатель пылеобразное рабочее тело хранится в одном или большем числе капсул, размещенных в магазине, имеется механизм для перемещения пылеобразного рабочего тела, который выполнен таким образом, что он имеет возможность вынимать капсулу из ячейки магазина и задвигать капсулу в ускоряющее пространство ЭРД и выдвигать капсулу обратно из ускоряющего пространства ЭРД. При этом капсула для хранения пылеобразного рабочего тела имеет обечайку из диэлектрического материала, донышко и быстросъемную крышку, которая имеет возможность сбрасываться вблизи первого, по ходу перемещения пылеобразного рабочего тела, ускоряющего электрода электроракетного двигателя. Изобретение позволяет исключить непосредственный контакт и трение механизмов с пылеобразным рабочим телом, регулировать подачу пылеобразного рабочего тела в ЭРД, а также уменьшить размеры ЭРД с пылеобразным рабочим телом. 8 з.п. ф-лы, 10 ил.
Наверх