Способ детектирования фазомодулированных колебаний

Изобретение относится к области радиотехники и может быть использовано в устройствах обработки сигналов, устройствах и приборах измерения сдвига фаз между исследуемым и опорным колебанием. Способ заключается в сравнивании результатов, полученных в каналах обработки основного и опорного синусоидальных сигналов. Причем в начале входное колебание в канале одновременно дифференцируют, интегрируют и умножают само на себя, а затем, взяв отношение напряжения последнего сигнала к напряжению, полученному путем перемножения проинтегрированного и продифференцированного сигналов, интегрируют результат отношения и объединяют с сигналом, полученным путем инвертирования отношения входного сигнала на его дифференцированное значение, результат объединения является выходным напряжением соответствующего канала, причем сравнение выходных напряжений каналов осуществляют как разность соответствующих напряжений, которая пропорциональна изменению фазы входного фазомодулированного колебания, т.е. закону изменения первичного сообщения. Способ детектирования может быть реализован как программным путем на базе микропроцессоров, так и в аппаратном виде. Технический результат - расширение диапазона рабочих частот и уменьшение искажения формы первичного сигнала. 1 ил.

 

Предлагаемое изобретение относится к области радиотехники и может быть использовано в устройствах обработки сигналов, устройствах и приборах измерения сдвига фаз между исследуемым и опорным колебанием.

Известен способ детектирования (демодуляции) фазомодулированных (ФМ) колебаний1 (1 ФМ колебание - есть высокочастотное вторичное колебание, фаза которого прямо пропорциональна закону изменения первичного сигнала.) (Теория электрической связи: Учебник для Вузов / А.Г.Зюко, Д.Д.Кловский, В.И.Коржик, М.В.Назаров; Под ред. Д.Д.Кловского. - М.: Радио и связь, 1998. - 432 с., 204 ил.), сущность которого заключается в том, что вначале в преобразователе вида модуляции изменение начальной фазы принимаемого высокочастотного ФМ колебания преобразуют в колебания амплитудной модуляции, амплитуда которых изменяется по закону модулирующего напряжения (первичного сигнала), а затем детектируют с помощью обычного дифференцированного детектора (как правило, два встречно включенных амплитудных детектора).

Данный способ детектирования имеет ряд недостатков, а именно наличие нелинейных искажений сигналов, которые обуславливаются характеристиками двух основных элементов фазового детектора - преобразователя вида модуляции и дифференциального амплитудного детектора.

Наиболее близким по своей технической сущности к заявляемому способу детектирования ФМ является способ, описанный в книге «Теория электрической связи» (Учебник для Вузов / А.Г.Зюко, Д.Д.Кловский, В.И.Коржик, М.В.Назаров; Под ред. Д.Д.Кловского. - М.: Радио и связь, 1998. - 432 с.; 204 ил.).

Данный способ-прототип синхронного (параметрического) детектирования ФМ колебаний предусматривает сравнение входного и опорного колебания перемножения их с последующим выделением первичного сигнала фильтром низких частот.

Недостатки данного способа детектирования ФМ колебаний определяются недостатками перемножителя (нелинейного элемента), а именно наличие искажений формы первичного сигнала и побочных продуктов преобразования, что предъявляет высокие требования к фильтрации; детектирование ФМ колебаний только определенной фиксированной частоты, равной опорной. То есть данный способ имеет ограниченные возможности по детектированию колебаний в широком диапазоне частот без изменения внутренних параметров устройства детектирования.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа детектирования ФМ колебаний, реализация которого позволит расширить диапазон рабочих частот и уменьшить искажения формы первичного сигнала, выделяемого в результате детектирования ФМ колебания.

Поставленная задача решается при помощи предлагаемого способа детектирования ФМ колебаний, сущность которого сводится к следующему.

Известно тригонометрическое выражение (Таблицы интегралов и другие математические формулы: Справочник / Г.Б.Двайт. - М.: Наука, 1997, стр.101, формула 480.2)

а для переменной х=ωt+φ, для которой dx=ωdt выражение (1) имеет вид

Для фазы φ=0 данное выражение имеет вид

При этом выражение для разности фаз двух сигналов (2) и (3)

ω∫tg2(ωt+φ)dt-ω∫tg2(ωt)dt=tg(ωt+φ)-tg(ωt)-φ,

т.е.

Следовательно, выражение (4) позволяет выделить фазу неизвестного колебания путем сравнения с опорным колебанием на основе линейных операций.

Рассмотрим реализацию выражения (4). Для этого выберем в качестве исследуемого колебания гармоническое колебание следующего вида:

uвхφ(t)=А0sin(ωt+φ(t)),

где ω - циклическая частота входного колебания, ω=const;

A0 - некоторый коэффициент, пропорциональный амплитуде входного колебания А0=const;

φ(t) - фаза измеряемого колебания.

При этом следует отметить, что в данном выражении выделяемая фаза φ(t) является управляемым информационным сообщением, что и определяет модуляцию. Несущая частота модулированного сигнала в соответствии с требованиями модуляции должна быть, как минимум, на порядок больше изменения информационного сообщения. Поэтому входной сигнал uвхφ(t) при анализе можно рассмотреть в виде

где φ - фиксированное значение детектируемой фазы.

Фиксированное значение детектируемой фазы в процессе ее детектирования исключает дополнительные динамические погрешности детектирования.

Проведем линейные операции над входным исследуемым колебанием синусоидальной формы (5) путем его одновременного дифференцирования, интегрирования и умножения самого на себя. При этом получим:

Перемножив выражение (6) на выражение (7) получим

Разделив результат, полученный в выражении (8) на результат выражения (9), получим величину, пропорциональную квадрату тангенса аргумента входного сигнала

При этом

Разделив выражение для входного сигнала (5) на результат его дифференцирования - выражение (6), получим

Аналогичные операции можно проделать и с опорным сигналом. Формальное отличие полученных выражений будет заключаться в отсутствие индексов φ, что соответствует опорному сигналу с нулевой фазой φ=0.

Для получения результатов в окончательном виде в соответствии с выражением (4), соответствующими слагаемыми, полученными в выражениях (11) и (12), как для исследуемого, так и для опорного сигнала, учтем инверсии этих сигналов, которые легко реализуются операцией вычитания, и получим

где uφ(t) - величина напряжения, пропорциональная сдвигу фазы между исследуемым и опорным сигналами, соответствующая левой части выражения (4).

Таким образом, реализовав выражение (13), получим на выходе напряжение, пропорциональное изменению фазы. Причем коэффициент пропорциональности k определяется не только частотой детектируемого колебания, но и постоянными применяемых дифференциаторов и интеграторов. Данный коэффициент может быть учтен на окончательном этапе полученного результата путем задания соответствующего коэффициента усиления вычитателя.

Преобразовав ФМ колебание в соответствии с математическими операциями (6)-(13), получим постоянное напряжение, величина которого пропорциональна изменению фазы входного ФМ колебания. Следовательно, данный способ обработки ФМ колебаний - есть способ их детектирования.

Отличительным признаком предложенного способа детектирования ФМ колебаний является то, что обработка ФМ сигнала с целью его детектирования осуществляется в соответствии с математическими операциями линейного характера, что предопределяет высокую точность и минимум искажений при детектировании ФМ колебаний.

Способ детектирования фазомодулированных колебаний, при котором сравнивают результаты, полученные в каналах обработки основного и опорного синусоидальных сигналов, заключающийся в том, что вначале входное колебание в канале одновременно дифференцируют, интегрируют и умножают само на себя, а затем, взяв отношение напряжения последнего сигнала к напряжению, которое получают путем перемножения проинтегрированного и продифференцированного сигналов, интегрируют полученный результат отношения и объединяют сигналы с сигналом, который получают путем инвертирования отношения входного сигнала на его дифференцированное значение, результат объединения является выходным напряжением соответствующего канала, а сравнение выходных напряжений каналов осуществляют как разность соответствующих напряжений, которая пропорциональна изменению фазы входного фазомодулированного колебания, т.е. закону изменения первичного сообщения. Данный способ детектирования может быть реализован как программным путем на базе микропроцессоров, так и в аппаратном виде.

Устройство, реализующее заявляемый способ детектирования представлено на чертеже, каждый канал обработки сигналов содержит два умножителя 1, 2, два делителя 3, 4, два интегратора 5, 6, дифференциатор 7, сумматор 8 и инвертор 9. Кроме того, каждый канал имеет устройство задержки сигналов 10, предназначенное для синхронной обработки сигналов в параллельных каналах. Общим для двух каналов является вычитатель 11. Вход каждого канала обработки соединен с обоими входами первого умножителя 1, со входом первого интегратора 5, входом дифференциатора 7 и первым входом первого делителя 3. Выходы первого интегратора 5 и дифференциатора 7 соединены со входом второго умножителя 2. Выход первого умножителя 1 через элемент задержки сигналов 10, а второго 2 непосредственно соединены со входами второго делителя 4, выход которого через второй интегратор 6 соединен к первому входу сумматора 8, ко второму входу которого через инвертор 9 подключен выход первого делителя напряжения 3, второй вход которого соединен с выходом дифференциатора и вторым входом умножителя 2. Выход сумматора 8 является выходом канала формирователя фазы.

Выходы каналов обработки основного и опорного сигналов подключаются к соответствующим входам вычитателя 11, вход которого является выходом фазового детектора.

Заявляемый способ детектирования реализуется следующим образом.

Входное синусоидальное ФМ колебание одновременно перемножается в первом умножителе 1, интегрируется в интеграторе 5 и дифференцируется в дифференциаторе 7. Затем выходные напряжения интегратора 5 и дифференциатора 7 перемножаются на втором умножителе 2. Взяв отношение в делителе 4 напряжения с выхода первого умножителя, задержанное напряжение задержки сигнала 10, к напряжению с выхода второго умножителя 2, получим напряжение, пропорциональное квадрату тангенса от аргумента входного сигнала, которое после интегрирования на втором интеграторе 6 поступает на первый вход сумматора 8.

Одновременно на второй вход сумматора 8 после инвертирования в инверторе 9 поступает напряжение с входа второго делителя напряжения 3, полученное путем отношения входного сигнала к напряжению с выхода дифференциатора 7. Просуммированное на сумматоре 8 напряжение является выходным напряжением соответствующего канала обработки сигнала.

Аналогично в канале опорного сигнала формируется выходное напряжение опорного сигнала А0sinωt.

Вычтя из напряжения на выходе основного канала напряжения на выходе опорного канала получаем на выходе вычитателя 11 напряжение, величина которого пропорциональна фазовому сдвигу между ФМ и опорным колебанием.

Таким образом, преобразовав ФМ колебание в соответствии с математическими операциями (1)÷(4), получим постоянное напряжение, величина которого пропорциональна изменению фазы входного ФМ колебания. Следовательно, данный способ обработки ФМ колебаний - есть способ их детектирования, и выражение (4) позволяет осуществить схемную реализацию прямого метода детектирования фазы.

Достоинством данного способа является возможность детектирования ФМ колебаний в широком диапазоне частот, практически без ограничения величины девиации фазы. Кроме того, данный способ детектирования инвариантен к паразитной амплитудной модуляции ФМ колебаний (изменению коэффициента А0) (см. выражение 13) и может быть реализован как на базе аналоговых устройств, так и в виде программ на ЭВМ.

Способ детектирования фазомодулированных колебаний, при котором сравнивают результаты, полученные в каналах обработки основного и опорного синусоидальных сигналов, отличающийся тем, что вначале входное колебание в канале одновременно дифференцируют, интегрируют и умножают само на себя, затем, взяв отношение напряжения последнего сигнала к напряжению, которое получают путем перемножения проинтегрированного и продифференцированного сигналов, интегрируют полученный результат отношения и объединяют с сигналом, который получают путем инвертирования отношения входного сигнала на его дифференцированное значение, результат объединения является выходным напряжением соответствующего канала, причем сравнение выходных напряжений каналов осуществляют как разность соответствующих напряжений, которая пропорциональна изменению фазы входного фазомодулированного колебания, т.е. закону изменения первичного сообщения.



 

Похожие патенты:

Изобретение относится к области радиоэлектроники и предназначено для использования в радиоприемных и радиопередающих устройствах и радиоизмерительной технике. .

Изобретение относится к радиотехнике для обработки радиосигналов при измерении частоты. .

Изобретение относится к системам автоматического управления и может быть использовано в образцах техники, имеющих фазовую связь каналов объекта управления, а также в установках для их научного исследования.

Изобретение относится к технике связи и может использоваться для детектирования огибающей сигнала при приеме сигналов в условиях априорной неопределенности или нестабильности несущей частоты сигнала, вызванной, в частности, наличием большой величины доплеровского смещения частоты в канале связи.

Изобретение относится к радиотехнике и может быть использовано в радиоприемных устройствах для детектирования сигналов с частотной модуляцией, в устройствах синхронизации.

Изобретение относится к радиоизмерительной технике и может найти применение для адаптивной коррекции параметров динамических характеристик сложных нелинейных и нестационарных радиотехнических устройств и систем, содержащих радиокомпоненты как с аналоговыми, так и с цифровыми сигналами, например квадратурный демодулятор с АЦП на выходе, который широко используется в радиолокационных системах, пеленгаторах и гидролокационных системах с фазированными антенными решетками.

Изобретение относится к технике связи и может использоваться при приеме сигналов дискретной информации при нестабильности несущей частоты сигнала, вызванной в частности наличием большой величины доплеровского смещения частоты в канале связи.

Изобретение относится к автоматике и аналоговой вычислительной технике. .

Изобретение относится к радиотехнике, а именно к технике радиосвязи, и предназначено для использования в составе устройств цифровой обработки сигналов при обработке узкополосных сигналов с компенсацией помех при приеме сигналов с фазоразностной модуляцией.
Изобретение относится к радиотехнике и средствам автоматики

Изобретение относится к области приема цифровых сигналов, передаваемых методом относительной фазовой модуляции (ОФМ), и может быть использовано для построения устройств демодуляции

Изобретение относится к способам приема цифровых сигналов, передаваемых методом относительной фазовой модуляции (ОФМ)

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции двоичных сигналов с относительной фазовой манипуляцией (ОФМ). Достигаемый технический результат - обеспечение высокоскоростной цифровой демодуляции сигналов с ОФМ. Цифровой демодулятор сигналов с относительной фазовой манипуляцией содержит аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки сигналов, первый и второй формирователи отклика канала на элементы сигнала с ОФМ, содержащие сумматор, вычитатель и регистр сдвига многоразрядных кодов, первый и второй квадратичные преобразователи и решающее устройство. 4 ил.

Система демодуляции сигнала относится к области демодуляции модулированного по фазе или по частоте сигнала и может использоваться для обнаружения движения объекта. Достигаемый технический результат - распознавание точной частоты конкретной составляющей сигнала в принятом сигнале с множественными составляющими. Система демодуляции сигнала содержит: комплексный демодулятор (110), имеющий первый вход (111) для приема модулированного по фазе входного сигнала (Si) и сконструированный для выполнения комплексного перемножения этого сигнала с аппроксимацией обратной величины фазовой модуляции; устройство (130) анализа спектра, принимающее демодулированный умноженный сигнал, произведенный комплексным демодулятором (110), и способное анализировать частотный спектр демодулированного умноженного сигнала, контроллер (140) модуляции. 3 н. и 12 з.п. ф-лы, 14 ил.

Изобретение относится к радиотехнике и может быть использовано в системах цифровой связи и радионавигации. Технический результат - повышение помехоустойчивости и достоверности приема сигналов с минимальным сдвигом частоты за счет использования свойств межсимвольных связей. Способ демодуляции сигналов с минимальной частотной манипуляцией характеризуется тем, что включает квадратурную обработку сигнала, перенос спектра сигнала из области высокой частоты в область видеочастот осуществляют в двух параллельно работающих квадратурных демодуляторах, при этом в одном из них в качестве опорных частот используются квадратурные компоненты несущей частоты единичных бит передаваемой информации, а в другом - нулевых бит, перед дифференцированием осуществляют суммирование выходных сигналов квадратурных демодуляторов, полученный сигнал дифференцируют, перед усреднением полученный сигнал подвергают двухстороннему ограничению и усилению. Устройство содержит два квадратурных демодулятора, два блока вычисления арктангенса, дифференциатор, сумматор, двухсторонний ограничитель, усилитель и схему усреднения. 2 н.п. ф-лы, 9 ил.
Изобретение относится к области радиотехники и может быть использовано в устройствах обработки радиосигналов и в приборах измерения амплитуды, частоты и фазы. Достигаемый технический результат - уменьшение времени детектирования параметров синусоидального сигнала в широком диапазоне частот без ограничения девиации частоты. Способ детектирования параметров синусоидального сигнала характеризуется тем, что определяют фазу детектируемого сигнала, сравнивают результаты, полученные в каналах обработки основного и опорного синусоидальных сигналов, первое канальное напряжение получают из входного колебания в канале путем умножения самого на себя, а второе канальное напряжение получают путем дифференцирования и интегрирования, затем перемножения проинтегрированного и продифференцированного сигналов, при этом первое выходное напряжение соответствующего канала пропорционально амплитуде детектируемого сигнала и определяется путем извлечения корня из квадрата детектируемой амплитуды, второе выходное напряжение соответствующего канала, пропорциональное частоте детектируемого сигнала, определяется как отношение канального продифференцированного сигнала к корню квадратному из разности квадрата амплитуды и первого канального напряжения, третье выходное напряжение, пропорциональное его фазе, определяется как разность интегралов второго выходного напряжения основного и опорного каналов. 1 ил.
Наверх