Способ получения прозрачного термостойкого стеклокристаллического материала

Способ получения прозрачного термостойкого стеклокристаллического материала относится к технологии оптических материалов, предназначенных для использования в условиях значительных температурных перепадов, в частности в нагревательных устройствах, в том числе и в качестве устойчивых к термоудару панелей кухонных плит, окон топок, каминных экранов, термостойкой посуды. Технический результат - получение голубого прозрачного стеклокристаллического материала с малым коэффициентом термического расширения. Стеклокристаллический материал содержит следующие компоненты, мол.%: SiO2 - 54,0-64,0; Al2O3 - 24,0-27,0; Li2O - 12-19; TiO2 - 6,0-8,0; CoO - 0,005-2,0. TiO2 и СоО введены сверх 100% основного состава. Данный материал получают путем варки стекла, его выработки, отжига и термообработки в две стадии: при 680-740°C в течение 2-12 часов, затем при 750-800°C в течение 2-24 часов, и последующего охлаждения стекла до комнатной температуры. Полученное изделие прозрачно, окрашено в голубой цвет и имеет низкий коэффициент термического расширения (10-12)·10-7 град-1. 2 табл.

 

Изобретение относится к стеклокристаллическим материалам, в частности к цветным прозрачным ситаллам с низким коэффициентом термического расширения (КТР), и предназначено для использования в условиях значительных температурных перепадов, в частности в нагревательных устройствах, в том числе и в качестве устойчивых к термоудару панелей кухонных плит, окон топок, каминных экранов, термостойкой посуды.

Известно, что стеклокристаллические материалы (СК) с близким к нулю коэффициентом термического расширения получаются в результате регулируемой кристаллизации твердых растворов со структурой β-кварца (β-эвкриптита) в стеклах литиевоалюмосиликатной системы. Этот метод используется для производства цветной прозрачной термостойкой кухонной посуды, устойчивых к термоудару верхних панелей электроплит, а также окон отопительных и металлургических печей. Так, фирмой Корнинг, США, были разработаны составы стекол, превращающихся в результате термообработки в стеклокристаллические материалы, окрашенные в разнообразные оттенки желтого, коричневого и пурпурного цветов. В патенте США №3788865, МПК C03C 10/14, опубликованном в январе 1974 г., описано получение прозрачных цветных стеклокристаллических материалов, содержащих β-эвкриптитовую кристаллическую фазу и окрашенных следующими добавками: V2O5, МnО, Сr2O3, Fe2O3, CuO, NiO и ZnS. Однако использование этих красителей не позволило получить голубой окраски в стеклокристаллических материалах.

В патенте США №4461839, МПК C03C 003/22, опубликованном 24.07.1984, описано получение прозрачного стеклокристаллического материала на основе β-кварцевого твердого раствора с окраской от черной до коричневой и красной, что обусловлено присутствием как минимум двух оксидов из группы, включающей CaO, CeO2, NiO, SnO2, V2O5, W2O3. Однако голубая окраска не была получена. Патент США №4526872, опубликованный 02.07.1985 по индексу МПК C03C 003/22; C03C 003/04, описывает получение материала приятного для глаза светло-коричневого оттенка путем введения смеси CoO и Сr2O3 в исходное титансодержащее стекло с добавками Fe2O3 и МnО и последующей кристаллизации. Однако голубой окраски стеклокристаллического материала получить не удается.

В патентах США №5179045, опубликованном 12.01.1993 по индексу МПК C03C 010/14, и №5256600, опубликованном 26.10.1993 по индексу МПК C03L 010/14, описывается получение термостойкого материала и термостойкой кухонной посуды винного цвета за счет катализированной кристаллизации исходного стекла, в которое совместно введены оксиды NiO и Co3O4 (патент №5179045), и янтарного или винного цвета за счет совместного введения Fe2O3 и Co3O4 (патент №5256600).

В патенте США №5491115, опубликованном 13.02.1996 по индексу МПК C03C 010/14; C03C 010/12, описывается получение красно-пурпурной и фиолетовой окраски в прозрачном термостойком стеклокристаллическом материале. Однако голубая и синяя окраски возникают в материале только после высокотемпературной термообработки, когда материал теряет прозрачность.

В последние годы отсутствуют патенты на получение новых окрасок в прозрачных термостойких стеклокристаллических материалах. Несмотря на многочисленные попытки получения прозрачных термостойких стеклокристаллических материалов, окрашенных в синий (голубой) цвет, такие материалы не были получены традиционными методами синтеза ситаллов. В частности, как было показано выше, введение в ситаллизирующиеся стекла ионов кобальта, окрашивающих многие стекла в синий цвет, приводит к получению фиолетового ситалла. Известен только один патент, патент США №4084974, опубликованный 18.04.1978 по индексу МПК C03B 032/00; C03C 003/22, в котором описывается способ получения прозрачных стеклокристаллических материалов, окрашенных в голубой и синий цвет. Окраска возникает за счет плавления стекол с высоким содержанием TiO2 в восстановительных условиях, что приводит к восстановлению Ti4+ до Ti3+ и к появлению синей окраски при последующей кристаллизации стекла. Составляется шихта, содержащая вещества-восстановители (крахмал, сахар, уголь), стекло варится при температуре 1600°C в восстановительных условиях, вырабатывается и отжигается при температуре 700°C. Вторичная термообработка стекла происходит при температуре около 850°C. Восстановительные условия варки плохо воспроизводятся, таким образом предложенное решение не может быть использовано в серийном производстве стеклокристаллических материалов. К тому же в получаемых материалах отсутствует стабильность и воспроизводимость окраски.

Патент США №4084974 принят за прототип предлагаемого изобретения.

Задача изобретения заключается в создании голубой прозрачной термостойкой стеклокерамики, получение которой возможно в стандартных производственных условиях. При этом нет необходимости в создании специальных условий синтеза, в особенности специальной газовой среды в печи или в использовании специально вводимых компонентов шихты - восстановителей.

Следует отметить, что получение голубого прозрачного СК материала имеет особое значение для применения в качестве термостойких светофильтров и в бытовой технике за счет малых величин коэффициента термического расширения.

Задача решается в способе получения прозрачного термостойкого стеклокристаллического материала, включающего варку стекла, содержащего SiO2, Al2O3, Li2O; TiO2, его выработку, отжиг, термообработку и охлаждение до комнатной температуры, в котором, в отличие от прототипа, используют стекло, содержащее дополнительно CoO при соотношении всех компонентов в мол.%: SiO2 - 54-64, Al2O3 - 24-27, Li2O - 12-19, TiO2 - 6-8, CoO - 0,005-2,0, где TiO2 и CoO введены сверх 100% основного состава стекла, а термообработку проводят в две стадии, сначала при 680-740°C в течение 2-12 часов, затем при 750-800°C в течение 2-24 часов.

Данное изобретение предлагает новый подход, позволяющий получать голубую прозрачную термостойкую стеклокерамику при варке стекла в нормальных условиях, на воздухе, без использования восстановительной атмосферы. Результат достигается за счет введения оксида кобальта в качестве красящей добавки в состав исходного стекла и регулируемой низкотемпературной кристаллизации наноразмерных кристаллов алюмокобальтовой шпинели. В отличие от ионов кобальта в структуре β-кварцевых твердых растворов, создающих в материале фиолетовую окраску, вхождение ионов кобальта в нанокристаллы шпинели в ходе термообработки приводит к появлению требуемой голубой окраски. При этом не требуется создания специальных восстановительных условий в процессе варки.

Для получения голубой прозрачной термостойкой стеклокерамики были разработаны специальные двухстадийные режимы термообработки исходного стекла, заключающиеся в низкотемпературной выдержке, в ходе которой кристаллизуется алюмокобальтовая шпинель, и в более высокотемпературной выдержке, в ходе которой кристаллизуются β-кварцевые твердые растворы, обеспечивающие высокую термостойкость материала, при сохранении шпинельной кристаллической фазы.

Прозрачная голубая стеклокерамика с низким коэффициентом термического расширения и нанокристаллами шпинели, содержащими ионы кобальта, может быть изготовлена из стекол составов, представленных в Таблице 1.

Таблица 1
Компонент стекла Концентрация (мол %)
SiO2 54-64
Аl2O3 24-27
Li2O 12-19
TiO2 6-8
CoO 0,005-2,0

Где TiO2 и CoO введены сверх 100% основного состава. Совокупность 3-х первых компонентов образует основу, формирующую ионно-ковалентно увязанную сетку стекла. При этом TiO2 является нуклеатором кристаллизации, а CoO - красителем.

Более подробное описание способа состоит из следующих этапов:

1. Плавление шихты стекла состава, приведенного в Таблице 1, при температуре на 200-300°C выше ликвидуса.

2. Охлаждение расплава до температуры 1300-1450°C с приданием стеклу необходимой формы и отжиг прозрачного стекла при температуре 640-670°C, при которой вязкость материала равна 1010.5-1011 Па·с.

3. Превращение стекла в стеклокерамику путем дополнительной термообработки: нагревания стекла по двухстадийному режиму, при котором образование нанокристаллов шпинели происходит при температуре от 680 до 740°C в течение 2-12 часов, а образование нанокристаллов β-кварца - при температуре от 750 до 800°C в течение 2-24 часов.

4. Охлаждение стеклокристаллического материла до комнатной температуры.

Основными преимуществами предложенной стеклокерамики перед известными техническими решениями является сочетание малого коэффициента термического расширения, прозрачности и голубой окраски, что позволяет использовать стеклокерамику для изготовления термостойких прозрачных голубых элементов нагревательных устройств и других прозрачных изделий, работающих в условиях значительных температурных перепадов.

Конкретные примеры составов стекол, режимов термообработки и полученные свойства стеклокристалличеких материалов приведены в Таблице 2. Из таблицы видно, что стеклокристаллические материалы данных составов, полученные по приведенным режимам, обладают прозрачностью, низким коэффициентом термического расширения и голубой окраской.

Компоненты шихты в виде оксидов и карбонатов смешивались, перемалывались с целью получения однородной шихты, шихта засыпалась в тигли из кварцевой керамики, которые закрывались крышками и помещались в печь. При температуре 1550-1600°C шихта плавилась в течение примерно 6 часов с перемешиванием мешалкой из кварцевой керамики, расплав отливался в стальную форму и образовывал стеклянный прозрачный брусок.

Таблица 2
Компонент стекла Номер образца
1 2 3
Концентрация, мол. %
SiO2 54 64 58
Аl2O3 27 24 26
Li2O 19 12 16
TiO2 6 8 7
CoO 0,005 2,0 0,01
Условия дополнительной термообработки
1 стадия 680°C, 12 часов 740°C, 2 часа 700°C, 6 часов
2 стадия 800°C, 2 часа 780°C, 6 часов 750°C, 24 часа
Характеристика образца Голубой, прозрачный Синий, прозрачный Голубой, прозрачный
Коэффициент термического расширения, (×10-7/°C) 10,0 12,0 11

Введение SiO2 в количествах, меньших указанного, не приводит после кристаллизации к образованию прозрачного термостойкого материала, а введение SiO2 в количествах, больших указанного, значительно повышает температуру плавления шихты, что препятствует получению однородного стекла. Введение Аl2O3 и Li2O в количествах, меньших и больших заявляемого интервала, препятствует получению прозрачного стеклокристаллического материала. Введение TiO2 в количествах, меньших заявляемого, препятствует получению прозрачного стеклокристаллического материала. Введение TiO2 в количествах, больших заявляемого, приводит к самопроизвольной кристаллизации исходного стекла при выработке. Введение CoO в количествах, меньших заявляемого, не приводит к получению голубой окраски стеклокристаллического материала. Введение CoO в количествах, больших заявляемого, приводит к самопроизвольной кристаллизации исходного стекла при выработке.

Дополнительная термообработка образцов на первой стадии при температуре ниже 680°C не приводит к жидкостному фазовому распаду и выделению кристаллической фазы - шпинели. Термообработка образцов на первой стадии при температуре выше 740°C приводит к выделению крупных кристаллов β-кварцевых твердых растворов без жидкостного фазового распада и без выделения кристаллической фазы - шпинели. Длительность термообработки на первой стадии менее 2 часов не приводит к фазовому разделению стекла и формированию кристаллов шпинели. Длительность термообработки на первой стадии более 12 часов приводит к разрушению кристаллов шпинели. Требуемая окраска не возникает.

Термообработка образцов на второй стадии при температуре ниже 750°C не приводит к выделению кристаллов β-кварцевых твердых растворов, а значит, не приводит к повышению термостойкости материала. Термообработка образцов на второй стадии при температуре выше 800°C приводит к распаду кристаллов шпинели и, следовательно, к исчезновению требуемой голубой окраски. Длительность термообработки на второй стадии менее 2 часов не достаточна для кристаллизации β-кварцевых твердых растворов и придания материалу термостойкости. Длительность второй стадии термообработки более 24 часов приводит к разрушению кристаллов шпинели. Требуемая окраска не возникает.

Образцы стекла термообрабатывались по режимам, указанным в Таблице 2. Кристаллические фазы определялись с помощью рентгенофазового анализа, также измерялся коэффициент термического расширения и спектр пропускания. В каждом опыте исходное стекло нагревалось до температуры первого плато со скоростью 200°C/час, выдерживалось в течение времени, достаточного для прохождения жидкостного фазового распада и выделения кристаллической фазы - шпинели, затем температура поднималась до второго плато со скоростью 100°C/час, при этом выделялись кристаллы β-кварцевого твердого раствора, обеспечивающие высокую термостойкость материала, и закристаллизованный образец охлаждался до комнатной температуры в печи инерционно. Размер кристаллов полученной шпинели составляет 3-6 нм, а кристаллов β-кварцевого твердого раствора - 20-30 нм.

Способ получения прозрачного термостойкого стеклокристаллического материала, включающий варку стекла, содержащего SiO2, Al2O3, Li2O, TiO2, его выработку, отжиг, термообработку и охлаждение до комнатной температуры, отличающийся тем, что используют стекло, содержащее дополнительно СоО, при соотношении всех компонентов, мол. %:

SiO2 54-64
Al2O3 24-27
Li2O 12-19
TiO2 6-8
СоО 0,005-2,0,

где TiO2 и CoO введены сверх 100% основного состава стекла, а термообработку проводят в две стадии, сначала при 680-740°C в течение 2-12 ч, затем при 750-800°C в течение 2-24 ч.



 

Похожие патенты:
Изобретение относится к стеклокерамическим изоляционным материалам, которые используют в качестве электрической изоляции проводов, предназначенных для изготовления проволочных сопротивлений, для антикоррозионной защиты термоэлектродных сплавов и других материалов, используемых при повышенной и высокой температуре.

Изобретение относится к составу прозрачного темно-красного стеклокристаллического материала, который может быть использован в стекольной промышленности, в частности в бытовой технике, в авиации, морском, железнодорожном транспорте и других отраслях промышленности.

Изобретение относится к технологии получения стеклокерамических материалов и изделий из них, в частности кристаллических материалов тонкозернистой структуры, и может быть использовано для получения электроизоляционных изделий с коэффициентом термического расширения при 600-850oC, близким к нулю.

Изобретение относится к области стеклокерамики, в частности к высокотемпературным радиопрозрачным стеклокристаллическим материалам, предназначенным для изготовления изделий авиационно-космической и ракетной техники
Изобретение относится к стеклокерамическим изоляционным материалам, предназначенным для электроизоляции проволоки из никеля и его сплавов, термоэлектродных сплавов и биметаллических проводов. Способ получения стеклокерамического электроизоляционного покрытия на проводах включает приготовление золя на основе тетраэтоксисилана, гидролизованного в кислой среде и легированного неорганическими кислотами и смесью нитратов металлов, смешивание золя с тугоплавким оксидом, гомогенизирование полученной суспензии ультразвуковым воздействием с последующим нанесением покрытия на провод и термообработкой покрытия. Нанесение покрытия и его термообработку осуществляют путем пропускания провода через ванну с суспензией и через туннельную печь со скоростью 0,5-3 м/мин, УЗ с частотой 20-44 кГц при соотношении золь/оксид, равном 1-2/1. Техническим результатом изобретения является возможность получать гибкие тонкие от 5 до 30 мкм стеклокерамические покрытия. 6 з.п. ф-лы, 2 табл.

Изобретение относится к батарее твердооксидных электролитических элементов (SOEC), изготовляемой способом, который включает следующие стадии: (a) формирование первого блока батареи элементов путем чередования по меньшей мере одной соединительной пластины и по меньшей мере одного узла элемента, причем каждый узел элемента содержит первый электрод, второй электрод и электролит, расположенный между этими электродами, а также обеспечение стеклянного уплотнителя между соединительной пластиной и каждым узлом элемента, причем стеклянный уплотнитель имеет следующий состав: от 50 до 70 мас.% SiO2, от 0 до 20 мас.% Аl2О3, от 10 до 50 мас.% СаО, от 0 до 10 мас.% МgО, от 0 до 2 мас.% (Na2O+K2O), от 0 до 10 мас.% В2O3 и от 0 до 5 мас.% функциональных элементов, выбранных из TiO2, ZrO2, F2, P2O5, МоО3, Fе2O3, MnO2, La-Sr-Mn-O перовскита (LSM) и их комбинаций; (b) превращение указанного первого блока батареи элементов во второй блок со стеклянным уплотнителем толщиной от 5 до 100 мкм путем нагревания указанного первого блока до температуры 500°C или выше и воздействия на батарею элементов давлением нагрузки от 2 до 20 кг/см2; (c) превращение указанного второго блока в конечный блок батареи твердооксидных электролитических элементов путем охлаждения второго блока батареи, полученного на стадии (b), до температуры ниже, чем на стадии (b), при этом стеклянный уплотнитель на стадии (a) представляет собой лист стекловолокон. Также изобретение относится к применению Е-стекла в качестве стеклянного уплотнителя в батареях твердооксидных электролитических элементов. Предлагаемые батареи демонстрируют малую степень ухудшения свойств в процессе эксплуатации. 2 н. и 7 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к прозрачной стеклокерамике с низким термическим расширением. Технический результат изобретения заключается в получении стеклокерамики с термическим расширением, близким к нулю. Прозрачная стеклокерамика имеет следующий состав, мас.%: SiO2 35-70; Al2O3 17-35; Li2O 2-6; TiO2 0-6; ZrO2 0-6; TiO2+ZrO2 0,5-9; ZnO 0,5-5. Стеклокерамика получена осветлением с использованием SnO2 и, по меньшей мере, одного дополнительного осветлителя, причем дополнительный осветлитель выбран из Sb2O3, SO4 2-, Br- и Cl-, в мольном отношении от 1:2 до 2:1. Стеклокерамика имеет коэффициент термического расширения 0±0,10·10-6/K в интервале температур от 0 до 50°С и содержит одну или более кристаллических фаз, выбранных из группы, состоящей из высокотемпературного кварца, кристаллов смешанного высокотемпературного кварца, китита, кристаллов смешанного китита, бета эвкриптита. 7 н. и 10 з.п. ф-лы, 2 табл.
Наверх