Способ получения полностью дейтерированных углеводородов c5+

Изобретение относится к способу получения полностью дейтерированных алифатических углеводородов C5+, включающему взаимодействие при температуре 200-350°С и давлении 0,1-5 МПа оксида углерода и дейтерия, взятых в мольном отношении 1:(0,5-2) в присутствии катализатора на основе переходных металлов VIII группы Периодической системы, предварительно восстановленного в токе дейтерия, при температуре 250-600°С в течение 0,5-20 ч, причем объемная скорость подачи смеси оксида углерода и дейтерия составляет 50-10000 ч-1. Применение предлагаемого способа позволяет получать полностью дейтерированные углеводороды, имеющие высокую стабильность к окислению. 2 з.п. ф-лы, 2 табл.

 

Изобретение относится к нефтехимии, газохимии, углехимии и касается способа получения полностью дейтерированных алифатических углеводородов, содержащих 5 и более атомов углерода (С5+).

Смеси алифатических углеводородов, содержащих 5 и более атомов углерода (С5+), являются ценными полупродуктами для производства компонентов моторных топлив и смазочных масел, которые выделяют из этих смесей посредством простой дистилляции.

Кроме того, твердые дейтерированные углеводороды (воски) находят применение в качестве составляющих лазерных мишеней; пленки и пластины из дейтерированных углеводородов могут служить мишенями в опытах по генерации нейтронов в сверхлазерных полях.

Основным методом получения дейтерийсодержащих углеводородов является изотопный обмен содержащегося в них водорода на дейтерий («дейтерирование») в присутствии катализаторов при повышенной температуре. Например, в патентах США 3746634 и 3876521 описан способ дейтерирования углеводородов путем пропускания их смеси с дейтерием через катализатор на основе металлов VII или VIII групп при температурах около 100 и 300°С соответственно. При этом дейтерий получали электролизом тяжелой воды (D2O).

К недостаткам указанного способа следует отнести его многостадийность, поскольку сначала получают углеводородные продукты синтезом из оксида углерода, а затем проводят обмен водород-дейтерий. Кроме того, трудно достичь полного замещения изотопов.

В то же время получение углеводородов из смеси газов, включающих оксид углерода и водород («синтез-газ»), в присутствии катализатора при повышенных температурах и давлениях хорошо известно из уровня техники как синтез Фишера-Тропша.

Катализаторы, которые подходят для проведения синтеза Фишера-Тропша, содержат, как правило, один или более каталитически активных переходных металлов VIII группы Периодической системы элементов, нанесенных на оксидные носители (Al2O3, SiO2, TiO2 и т.д.). В частности, железо, кобальт, никель и рутений хорошо изветны как активные металлы для такого катализатора. Кобальт является наиболее оптимальным катализатором при преобразовании синтез-газа в предельные углеводороды, содержащие 5 и более атомов углерода, вследствие его высокой селективности по отношению к этим продуктам.

Известен, в частности, способ получения углеводородов С5+, включающий взаимодействие оксида углерода и водорода при повышенных температурах и давлениях в присутствии эффективного катализатора синтеза Фишера-Тропша, в котором используются каталитически активные металлы из VIII группы Периодичесткой системы (патент РФ 2282608).

При использовании этих соединений серьезной проблемой является их окисление кислородом воздуха даже при нормальных условиях. Образующиеся при этом кислородсодержащие соединения существенно ухудшают свойства целевых продуктов. Например, наличие органических кислот в углеводородных смазочных маслах или моторных топливах заметно повышает их коррозионную активность в отношении поверхности металла, с которой они соприкасаются. Улучшить устойчивость углеводородов по отношению к воздуху можно путем введения в состав их молекул дейтерия - нерадиоактивного изотопа водорода. Известно, что связь углерод-дейтерий является более сильной, чем углерод-протий, что и обуславливает более низкие скорости окисления дейтерированных углеводородов.

Поставленная задача состояла в разработке способа получения полностью дейтерированных углеводородов, имеющих высокую стойкость к окислению, предусматривающего упрощенную технологию синтеза дейтерированных алифатических углеводородов С5100.

Согласно настоящему изобретению способ получения полностью дейтерированных алифатических углеводородов С5100 включает взаимодействие при температуре 200-350°С и давлении 0,1-5 МПа оксида углерода и дейтерия, взятых в мольном отношении 1:(0,5-2) в присутствии катализатора на основе переходных металлов VIII группы Периодической системы, предварительно восстановленного в токе дейтерия, при температуре 250-600°С в течение 0,5-20 ч, причем объемная скорость подачи смеси оксида углерода и дейтерия составляет 50-10000 ч-1.

Предпочтительным является использование кобальтового катализатора.

Процесс проводят предпочтительно при давлении 2-3 МПа.

Синтез Фишера-Тропша, по существу, представляет собой реакцию олигомеризации интермедиатов, образующихся при температуре 150-400°С на поверхности катализаторов на основе металлов VIII группы (Со, Fe). Способность катализаторов к полимеризации оценивают по величине показателя альфа (α) в уравнении Шульца-Флори, описывающем молекулярно-массовое распределение образующихся алифатических углеводородов:

,

где Wn - массовая доля н-парафина с числом углеродных атомов n, n - число углеродных атомов, α - константа, характеризующая вероятность роста углеводородной цепи. Чем больше α, тем более селективным является катализатор в отношении образования тяжелых продуктов. Например, при α=0,9 доля твердых парафинов (C16+) в продуктах синтеза составляет 30%.

В настоящем способе используют катализаторы, которые подходят для проведения синтеза Фишера-Тропша, содержащие каталитически активные металлы VIII группы, в частности железо, никель, рутений и предпочтительно кобальт, и оксидный носитель.

Катализатор может в дополнение включать промоторы, известные специалистам в данной области техники, такие как оксиды циркония, титана, марганца и др.

Катализатор предварительно подвергают активации, восстанавливая его в токе дейтерия при температуре 250-600°С, предпочтительно 350-500°С, в течение 0,5-20 ч, предпочтительно 0,5-2,5 ч.

Оксид углерода и дейтерий подают в реактор в стехиометрическом мольном отношении: оптимальным отношением CO/D2 для кобальтовых катализаторов является 1:2, для железных катализаторов 1:0,5, а для других - в заявленном диапазоне значений.

Синтез дейтерированных алифатических углеводородов из оксида углерода и дейтерия можно осуществлять с использованием различных типов реакторов, например в реакторах с неподвижным псевдоожиженным или суспендированным слоем катализатора. При этом размер частиц катализатора может варьироваться в зависимости от выбранного способа ведения процесса. Специалист может выбрать оптимальный размер частиц катализатора в зависимости от типа использованного реактора и выбранного режима.

Объемная скорость синтез-газа (отношение скорости подачи синтез-газа, выраженной в л/ч, к количеству катализатора, выраженному в л) может изменяться в широком интервале от 50 до 10000 ч-1. Также понятно, что специалист может выбрать наиболее оптимальные условия в зависимости от конкретной конструкции реактора и режима осуществления реакции и рассчитать эффективное количество катализатора.

Приведенные ниже примеры иллюстрируют, но не ограничивают изобретение.

Пример 1

В качестве катализатора используется образец, содержащий 30%Со и 0,5% Re, нанесенных методом пропитки из азотнокислых солей на оксид алюминия как на носитель.

Перед проведением синтеза образец катализатора активируют в токе водорода при 450°С в течение 1 ч.

Синтез углеводородов проводят в трубчатом реакторе со стационарным слоем катализатора при атмосферном давлении с использованием синтез-газа состава СО/Н2=1/2(моль) и объемной скоростью (о.с.) 100 ч-1.

Примеры 2-11

В качестве катализатора используется образец, содержащий 30%Со и 0,5% Re, нанесенных методом пропитки из азотнокислых солей на оксид алюминия как на носитель.

Перед проведением синтеза образец катализатора активируют в токе дейтерия.

Синтез углеводородов проводят в трубчатом реакторе со стационарным слоем катализатора.

Условия восстановления катализатора и условия синтеза отражены в табл.1.

Приведенные в таблице 1 результаты показывают, что предложенный способ позволяет синтезировать полностью дейтерированные алифатические углеводороды из оксида углерода и дейтерия в присутствии катализаторов синтеза Фишера-Тропша при атмосферном и повышенном давлении.

Полученные смеси углеводородов, содержащих дейтерий и протий, были проанализированы методом ЯМР 1Н и+2Н, для чего использовали ЯМР-спектрометр Bruker АС200, настроенный на получение спектров на ядрах 1Н и 2Н при частотах 200,13 МГц (Н-1) и 30,72 МГц (Н-2). Навеску смеси углеводородов массой 0,0795 г растворили в 0,6530 г CDCl3, поместили в ампулу и сняли спектры. Соотношение интенсивностей сигналов в областях 0,5-2,5 м.д. (парафиновые углеводороды) и 5,0-5,5 м.д. (олефиновые углеводороды) было равно около 0,01. Соотношение интенсивностей пиков CDCl3 и CnDm в спектре ЯМР 2Н составляет 80,76:154,12. Это соответствует чистоте продукта по дейтерию ~100%. Таким образом установлено, что использование предлагаемого изобретения позволяет получать смеси полностью дейтерированных алифатических углеводородов С5100, преимущественно нормальных парафинов.

Установлено, что синтез дейтерированных алифатических углеводородов из СО и D2 протекает с более высокой селективностью в отношении целевых продуктов - углеводородов С5100 (то есть жидких углеводородов и восков), чем синтез протонированных углеводородов из СО и Н2.

Кроме того, для синтеза дейтерированных алифатических углеводородов из СО и D2 характерна более высокая степень полимеризации (величина ШФ-альфа), то есть в этом случае образуются более тяжелые углеводородные продукты. Указанные эффекты наблюдаются при проведении синтеза углеводородов как при атмосферном, так и при повышенном давлении.

В таблице 2 приведены физические свойства полученных при давлении 20 атм дейтерированных продуктов (жидких углеводородов и восков).

Можно видеть, что в ряде случаев они весьма существенно отличаются от аналогичных свойств протонированных соединений, приведенных в таблице 2 для сравнения. Например, плотность дейтерированных восков составляет 546,382 кг/м3, а плотность протонированных восков равна 517,085 кг/м3. Энтальпии образования этих соединений составляют соответственно -486,201 и -530,607 кДж/моль, а вязкость этих продуктов соответственно равна 0,00308 и 0,00391 Пз*сек.

Таблица 1
Показатели синтезов углеводородов, проведенных в соответствии с изобретением
Пример Условия восстановления Условия синтеза Конверсия Селективность по, % Выход С5+, г/м3 ШФ-альфа
Газ T, °C Время, ч T, °С Р, МПа О.С., ч-1 СО, % СН4 C5+
1 Н2 450 1 200 0,1 100 85 8 73 101 0,84
2 D2 450 1 200 0,1 100 71 3 87 98 0,87
3 D2 250 0,5 200 0,1 50 65 6 81 94 0,86
4 D2 600 1 200 0,1 100 75 7 79 92 0,88
5 D2 450 1 220 2,0 1000 80 9 82 125 0,85
6 D2 450 1 200 2,0 1000 39 5 88 82 0,94
7 D2 450 1 220 2,0 1000 72 8 84 100 0,92
8 D2 450 1 230 2,0 1000 85 10 85 132 0,90
9 D2 450 1 250 2,0 1000 90 24 70 93 0,87
10 D2 450 1 270 3,0 5000 95 30 64 78 0,88
11 D2 450 1 350 5,0 10000 98 44 46 52 0,89

Таблица 2
Физические свойства дейтерированных углеводородных продуктов, полученных при давлении 20 атм
№№ Параметр Дейтерированные продукты Протонированные продукты
Жидкие углеводороды Воски Жидкие углеводороды Воски
1 Давление паров над жидкой фазой, атм 7.11·10-3 0,1046·10-3 11,80·10-3 0,08883·10-3
2 Сжимаемость
паров 0,928 0,721 0,932 0,721
конденсированной фазы 0,0122 0,0181 0,0119 0,0211
3 Плотность, кг/м3
паров 3,94314 9,0763 3,82097 9,08521
конденсированной фазы 645,32 546,382 637,425 517,085
4 Энтальпия образования, кДж /моль
паров -166,584 -280,998 -163,28 -281,35
конденсированной фазы -378,684 -486,201 -366,161 -530,607
5 Энтропия, Дж/ (моль*K)
паров 181,431 192,173 181,746 192,171
конденсированной фазы 204,509 252,172 201,403 264,476
6 Изобарная теплоемкость, Дж/(моль*K)
паров 130,876 287,497 127,422 287,922
конденсированной фазы 411,475 572,413 396,051 631,177
7 Вязкость, Пз*сек
паров 6,19822е-06 5,11332е-06 6,26167е-06 5,11473е-06
конденсированной фазы 0,00204773 0,0030814 0,00175541 0,00391062
8 Коэффициент теплопроводности, Вт/(м*K)
паров 0,0103459 0,00891529 0,0104603 0,00892781
конденсированной фазы 0,124838 0,0943064 0,122017 0,0867665

1. Способ получения полностью дейтерированных алифатических углеводородов
С5+, включающий взаимодействие при температуре 200-350°С и давлении 0,1-5 МПа оксида углерода и дейтерия, взятых в мольном отношении 1:(0,5-2) в присутствии катализатора на основе переходных металлов VIII группы Периодической системы, предварительно восстановленного в токе дейтерия, при температуре 250-600°С в течение 0,5-20 ч, причем объемная скорость подачи смеси оксида углерода и дейтерия составляет 50-10000 ч-1.

2. Способ по п.1, отличающийся тем, что в качестве катализатора используют катализатор синтеза Фишера-Тропша на основе кобальта.

3. Способ по п.1, отличающийся тем, что процесс осуществляют предпочтительно при давлении 2-3 МПа.



 

Похожие патенты:

Изобретение относится к новым соединениям формулы (I), в которой Ar представляет собой фенил, фуранил, тиофенил, тиазолил, пиридинил; R1 независимо выбирают из группы, состоящей из водорода, низшего алкила, низшего алкокси, галогена и нитро; R2 независимо выбирают из группы, состоящей из водорода и галогена; R4 представляет собой гидрокси или остаток пирролидин-2-карбоновой кислоты, пиперидин-2-карбоновой кислоты или 1-аминоциклопентанкарбоновой кислоты, присоединенных через атом азота аминокислотного остатка; n означает 0, 1, 2, 3, 4 или 5; m означает 0, 1, 2, 3 или 4; р означает 0, и s означает 0, или к их фармацевтически приемлемым солям, при условии, что соединение не представляет собой S-1-[5-(бифенил-4-илоксиметил)фуран-2-карбонил] пирролидин-2-карбоновую кислоту, 5-(бифенил-4-илоксиметил)фуран-2-карбоновую кислоту, 3-(бифенил-4-илоксиметил)бензойную кислоту, 2-(бифенил-3-илоксиметил)бензойную кислоту, 4-(бифенил-3-илоксиметил)бензойную кислоту, 4-(бифенил-4-илоксиметил)бензойную кислоту, 5-(бифенил-4-илоксиметил)тиофен-2-карбоновую кислоту.

Изобретение относится к механоактивированным аморфным и аморфно-кристаллическим кальциевым солям глюконовой кислоты и композициям кальциевой соли глюконовой кислоты, фармацевтическим препаратам на их основе, способу их получения и применения для лечения стоматологических или костных заболеваний, связанных с нарушением обмена кальция в организме.

Изобретение относится к новым замещенным феноксиуксусным кислотам (I), в которых: Х представляет собой галоген, циано, нитро или С1-4алкил, который замещен одним или более чем одним атомом галогена; Y выбран из водорода, галогена или C1-С6алкила, Z представляет собой фенил, нафтил или кольцо А, где А представляет собой шестичленное гетероциклическое ароматическое кольцо, содержащее один или два атома азота, или может представлять собой 6,6- или 6,5-конденсированный бицикл, содержащий один атом О, N или S, или может представлять собой 6,5-конденсированный бицикл, содержащий два атома О, причем фенил, нафтил или кольца А все, возможно, замещены одним или более чем одним заместителем, независимо выбранным из галогена, CN, ОН, нитро, COR9, CO2R6, SO2 R9, OR9, SR9, SO2 NR10R11, CONR10R11 , NR10R11, NHSO2R9 , NR9SO2R9, NR6CO 2R6, NR9COR9, NR6CONR4R5, NR6SO 2NR4R5, фенила или C1-6 алкила, причем последняя группа, возможно, замещена одним или более чем одним заместителем, независимо выбранным из галогена; R1 и R2 независимо представляют собой атом водорода или С1-6алкильную группу, R4 и R5 независимо представляют собой водород, С3 -С7циклоалкил или C1-6алкил, R6 представляет собой атом водорода или C1-6алкил; R 8 представляет собой С1-4алкил; R9 представляет собой C1-6алкил, возможно, замещенный одним или более чем одним заместителем, независимо выбранным из галогена или фенила; R10 и R11 независимо представляют собой фенил, 5-членное ароматическое кольцо, содержащее два гетероатома, выбранных из N или S, водород, С3-С7циклоалкил или C1-6алкил, причем последние две группы, возможно, замещены одним или более чем одним заместителем, независимо выбранным из галогена или фенила; или R10 и R11 вместе с атомом азота, к которому они присоединены, могут образовывать 3-8-членное насыщенное гетероциклическое кольцо, возможно, содержащее один атом или более чем один атом, выбранный из О, S(O)n (где n=0, 1 или 2), NR8.
Изобретение относится к способу получения полиэфирного продукта из оксида алкилена и карбоновой кислоты. .

Изобретение относится к новым частицам основной соли алюминия, содержащей анион органической кислоты, представленным следующей общей формулой (I): Ma[Al1-xM' x]bAzBy(OH)n·mH 2O (в которой М представляет собой, по меньшей мере, один катион, выбранный из группы, состоящей из Na+, K +, NH4 + и Н3O+; и М' представляет собой, по меньшей мере, один катион металла, выбранный из группы, состоящей из Cu2+, Zn2+, Ni2+ , Zr4+, Fe2+, Fe3+ и Ti 4+; А представляет собой, по меньшей мере, один анион органической кислоты, выбранный из группы, состоящей из аниона щавелевой кислоты, аниона лимонной кислоты, аниона яблочной кислоты, аниона винной кислоты, аниона глицериновой кислоты, аниона галловой кислоты и аниона молочной кислоты; В представляет собой, по меньшей мере, один анион неорганической кислоты, выбранный из группы, состоящей из сульфатного иона (SO4 2-), фосфатного иона (PO4 3-), нитратного иона (NO3 1-); и а, b, m, n, х, y и z удовлетворяют условиям 0,7 а 1,35; 2,7 b 3,3; 0 m 5; 4 n 7; 0 x 0,6; 1,7 y 2,4 и 0,001 z 0,5, соответственно).

Изобретение относится к новым частицам основной соли алюминия, содержащей анион органической кислоты, представленным следующей общей формулой (I): Ma[Al1-xM' x]bAzBy(OH)n·mH 2O (в которой М представляет собой, по меньшей мере, один катион, выбранный из группы, состоящей из Na+, K +, NH4 + и Н3O+; и М' представляет собой, по меньшей мере, один катион металла, выбранный из группы, состоящей из Cu2+, Zn2+, Ni2+ , Zr4+, Fe2+, Fe3+ и Ti 4+; А представляет собой, по меньшей мере, один анион органической кислоты, выбранный из группы, состоящей из аниона щавелевой кислоты, аниона лимонной кислоты, аниона яблочной кислоты, аниона винной кислоты, аниона глицериновой кислоты, аниона галловой кислоты и аниона молочной кислоты; В представляет собой, по меньшей мере, один анион неорганической кислоты, выбранный из группы, состоящей из сульфатного иона (SO4 2-), фосфатного иона (PO4 3-), нитратного иона (NO3 1-); и а, b, m, n, х, y и z удовлетворяют условиям 0,7 а 1,35; 2,7 b 3,3; 0 m 5; 4 n 7; 0 x 0,6; 1,7 y 2,4 и 0,001 z 0,5, соответственно).

Изобретение относится к новым частицам основной соли алюминия, содержащей анион органической кислоты, представленным следующей общей формулой (I): Ma[Al1-xM' x]bAzBy(OH)n·mH 2O (в которой М представляет собой, по меньшей мере, один катион, выбранный из группы, состоящей из Na+, K +, NH4 + и Н3O+; и М' представляет собой, по меньшей мере, один катион металла, выбранный из группы, состоящей из Cu2+, Zn2+, Ni2+ , Zr4+, Fe2+, Fe3+ и Ti 4+; А представляет собой, по меньшей мере, один анион органической кислоты, выбранный из группы, состоящей из аниона щавелевой кислоты, аниона лимонной кислоты, аниона яблочной кислоты, аниона винной кислоты, аниона глицериновой кислоты, аниона галловой кислоты и аниона молочной кислоты; В представляет собой, по меньшей мере, один анион неорганической кислоты, выбранный из группы, состоящей из сульфатного иона (SO4 2-), фосфатного иона (PO4 3-), нитратного иона (NO3 1-); и а, b, m, n, х, y и z удовлетворяют условиям 0,7 а 1,35; 2,7 b 3,3; 0 m 5; 4 n 7; 0 x 0,6; 1,7 y 2,4 и 0,001 z 0,5, соответственно).

Изобретение относится к новым частицам основной соли алюминия, содержащей анион органической кислоты, представленным следующей общей формулой (I): Ma[Al1-xM' x]bAzBy(OH)n·mH 2O (в которой М представляет собой, по меньшей мере, один катион, выбранный из группы, состоящей из Na+, K +, NH4 + и Н3O+; и М' представляет собой, по меньшей мере, один катион металла, выбранный из группы, состоящей из Cu2+, Zn2+, Ni2+ , Zr4+, Fe2+, Fe3+ и Ti 4+; А представляет собой, по меньшей мере, один анион органической кислоты, выбранный из группы, состоящей из аниона щавелевой кислоты, аниона лимонной кислоты, аниона яблочной кислоты, аниона винной кислоты, аниона глицериновой кислоты, аниона галловой кислоты и аниона молочной кислоты; В представляет собой, по меньшей мере, один анион неорганической кислоты, выбранный из группы, состоящей из сульфатного иона (SO4 2-), фосфатного иона (PO4 3-), нитратного иона (NO3 1-); и а, b, m, n, х, y и z удовлетворяют условиям 0,7 а 1,35; 2,7 b 3,3; 0 m 5; 4 n 7; 0 x 0,6; 1,7 y 2,4 и 0,001 z 0,5, соответственно).

Изобретение относится к способу получения N-алкил-О-алкилкарбаматов общей формулы I: где R, R1 означают алкильные группы нормального или разветвленного строения с числом атомов углерода от 1 до 8, арилалкильные или алкоксиалкильные, а также гетерилалкильные группы, заключающийся в том, что осуществляется взаимодействие спирта R1OH и симметричной дизамещенной мочевины II, где R, R1 имеют то же значение, что и в формуле I, при повышенной температуре, характеризующемуся тем, что процесс проводят в непрерывном или периодическом режиме и дополнительно вводят оловоорганический катализатор в количестве от 0,01 до 1 мол.% при соотношении реагентов мочевина: алифатический спирт 1:(1÷60) мольн.

Изобретение относится к химии хлорорганических соединений, а именно к усовершенствованному способу получения хлорзамещенных арилоксикарбоновых кислот путем хлорирования кислот общей формулы где R1 - Н, галоид, С1 -С4-алкил, n - целое число от 1 до 3, или их солей с последующим выделением целевого продукта, в котором в качестве хлорирующего средства используют твердый гипохлорит кальция в отсутствие растворителей, а активацию процесса осуществляют механическим воздействием в виде ударной или ударно-сдвиговой нагрузки на смесь твердых реагентов

Изобретение относится к химии хлорорганических соединений, а именно к усовершенствованному способу получения хлорзамещенных арилоксикарбоновых кислот путем хлорирования кислот общей формулы где R1 - Н, галоид, С1 -С4-алкил, n - целое число от 1 до 3, или их солей с последующим выделением целевого продукта, в котором в качестве хлорирующего средства используют твердый гипохлорит кальция в отсутствие растворителей, а активацию процесса осуществляют механическим воздействием в виде ударной или ударно-сдвиговой нагрузки на смесь твердых реагентов

Изобретение относится к фармацевтическим композициям, включающим дивалентную а именно кальциевую, магниевую или цинковую соль, правастатина или флувастатина и омега-3 жир, для профилактики, снижения или лечения повышенных уровней холестерина, атеросклероза, гиперлипидемии, сердечно-сосудистых нарушений и заболеваний, коронарной болезни сердца и/или цереброваскулярной болезни

Изобретение относится к усовершенствованному способу реакционной экстракции левулиновой кислоты из водной смеси, содержащей левулиновую кислоту, в котором водную смесь приводят в контакт с жидким этерифицирующим спиртом, который имеет, по меньшей мере, четыре атома углерода и по существу не смешивается с водой, в условиях этерификации в присутствии катализатора и при температуре в пределах от 50 до 250°С, в результате чего образуется эфир левулиновой кислоты, причем используют один жидкий спирт в таком количестве, что он экстрагирует эфир из водной смеси с образованием водной фазы, содержащей катализатор и имеющей пониженное содержание левулиновой кислоты, и органической фазы, содержащей спирт и эфир левулиновой кислоты

Изобретение относится к биотехнологии и может быть использовано для повышения эффективности ферментативного расщепления целлюлозосодержащих субстратов в технологиях переработки целлюлозосодержащих отходов, в спиртовой, пищевой, целлюлозно-бумажной отраслях промышленности, в кормопроизводстве, в технологиях обработки тканей из природных растительных волокон и др

Изобретение относится к способу получения производных нитроизомочевины, представленных следующей общей формулой (3), в котором представленные следующей общей формулой (1) производные нитроизомочевины и представленные следующей общей формулой (2) амины или их соли взаимодействуют в присутствии каталитического количества гидрокарбоната При этом в формуле (1) R1 представляет собой алкильную группу, содержащую от 1 до 4 атомов углерода; в формуле (2) R2 представляет собой алкильную группу, содержащую от 1 до 4 атомов углерода, и R3 представляет собой атом водорода; в формуле (3) R1 представляет собой алкильную группу, содержащую от 1 до 4 атомов углерода; R2 представляет собой алкильную группу, содержащую от 1 до 4 атомов углерода; и R3 представляет собой атом водорода
Наверх