Аккумулятор водорода

Изобретение относится к области водородной энергетики и может быть использовано для хранения, транспортировки и распределения (подачи) водорода в топливных элементах и других энергетических установках. В аккумуляторе водорода, содержащем полые микросферы и сплав, образующий с водородом гидрид металла, внутренняя полость микросферы выполнена свободной. Сплав металла нанесен на наружную поверхность микросферы. Стенка микросферы выполнена проницаемой для водорода при комнатной температуре. Техническим результатом изобретения является обеспечение одновременно высокого весового и высокого объемного содержания водорода, обладающего высокоскоростными регулирующими свойствами при заполнении аккумулятора и при его разрядке (подаче к потребителю), и безопасного хранения и транспортировки водорода. 2 ил., 1 табл.

 

Изобретение относится к области водородной энергетики и может быть использовано для хранения, транспортировки и распределения (подачи) водорода в топливных элементах и других энергетических установках.

Одной из основных проблем, сдерживающих развитие водородной энергетики, является отсутствие надежных, безопасных и энергоемких устройств для хранения и транспортировки водорода.

Известны аккумуляторы водорода, выполненные в виде полых микросфер, преимущественно из стекла, во внутреннюю полость которых под давлением и при повышенной температуре порядка 400°С закачивают водород, а для последующего извлечения водорода микросферы подвергают нагреву опять же до 400°С, и водород из внутренней полости через капилляры в стенке поступает в пространство между микросферами и далее к потребителю (См. Международная заявка WO 2008/019414, классификация отсутствует, опубл. 21.02.2008 г.).

Недостатком аккумуляторов данного типа является недостаточное объемное содержание водорода и сложность управления процессом извлечения водорода из внутренней полости, т.к. требуется нагрев микросфер до температуры 400°С для увеличения проницаемости стенки, сложность регулирования нагрева для получения заданного количества водорода, длительное время для создания требуемого потока водорода.

Другим направлением в данной области является использование металлов, образующих с водородом гидриды металлов (металлогидриды). Гидриды металлов обычно располагают на подложках, в качестве которых используют различные микрочастицы.

Использование металлогидридов позволяет достичь объемное содержание водорода до 13%, т.е. 13 кг водорода на 100 литров металлогидрида. Но весовое содержание водорода при использовании металлогидридов очень низкое, что ограничивает их использование как аккумуляторов водорода. (См. п. США №7279222, B22F 1/00, С01В 3/00, опубл. 28.10.2004 г.)

Наиболее близким по технической сущности к заявляемому изобретению является аккумулятор водорода, содержащий полые микросферы, внутренние полости которых содержат зерна металлогидрида, например палладия. Для введения раствора соли палладия и проникновения водорода во внутреннюю полость в стенке микросферы выполнены поры размером от 10 до 1000 Ангстрем, плотность микросферы составляет от 1 до 2 кг/см3. Водород аккумулируется и хранится в металлогидриде (палладии), расположенном во внутренней полости микросферы и извлекается из зерен металлогидрида за счет нагрева микросферы и прохождения через поры в стенке. Поры служат, в первую очередь, для проникновения раствора соли палладия во внутреннюю полость микросферы и последующего осаждения палладия в виде зерен (См. Международная заявка WO 2007/050362, опубл. 03.05.2007 г., МКИ С03С 11/00).

Технической задачей предполагаемого изобретения является создание аккумулятора водорода, обеспечивающего одновременно высокое весовое и высокое объемное содержание водорода, обладающего высокоскоростными регулирующими свойствами при заполнении аккумулятора и при его разрядке (подаче к потребителю), обеспечивающего безопасное хранение и транспортировку водорода, исключающего его воспламенение и взрыв.

Министерством энергетики США представлены основные требования к параметрам аккумуляторов водорода, выполнение которых обеспечивает государственную поддержку данному направлению устройств для хранения и транспортировки водорода. (См. Таблицу 1.)

В заявляемом решении сочетаются свойства микросфер - высокое весовое содержание водорода и свойства гидридов металлов - высокое объемное содержание водорода. При этом гидрид металла выполняет несколько функций, а именно: является барьером для выхода водорода из микросферы, является регулятором подачи водорода из микросферы при изменении температуры. Температурный режим функционирования аккумулятора значительно ниже (порядка 100°С), чем в известных аккумуляторах (400°С).

Оболочка (стенка) микросферы позволяет заполнение ее без нагрева, но является и прочным барьером для восприятия нагрузки - внутреннего давления водорода, обеспечивая высокую безопасность аккумулятора. Внутренняя полость микросферы и металлогидрид одновременно содержат водород.

Сущность изобретения поясняется чертежами, где:

на фиг.1 - схематично изображен предлагаемый аккумулятор;

на фиг.2 - микросфера в разрезе.

Предлагаемый аккумулятор состоит из цилиндрического корпуса 1 с патрубками 2 для зарядки водородом и патрубками 3 для подачи (разрядки). Внутреннее пространство корпуса заполнено микросферами 4. Аккумулятор снабжен нагревателем 5 для нагрева микросфер. Каждая из микросфер имеет внутреннюю полость 6, которая выполнена свободной, т.е. не содержит каких-либо твердых или жидких материалов. В стенке (оболочке) 7 имеются капилляры 8, обеспечивающие стенке проницаемость водорода при комнатной температуре. На наружной поверхности стенки нанесен слой 9 металла (сплава), образующего с водородом гидрид металла, например лантанат никеля.

При работе аккумулятор заряжается водородом, который под давлением через патрубки 2 подается в аккумулятор. Водород через слой 9 металлогидрида и капилляры 8 поступает во внутреннюю полость 6 микросферы, а также сорбируется слоем 9 металлогидрида. Таким образом, и во внутренней полости микросферы и на ее поверхности в слое 9 находится водород. Для получения водорода (разрядки) микросферы в аккумуляторе нагревают до температуры 100°С, при которой из слоя 9 металлогидрида выделяется водород. Выделившийся из слоя 9 водород непрерывно подпитывается водородом из внутренней полости 6 микросферы 4 до достижения равновесного состояния при этой температуре.

Этим самым: исключается необходимость в нагреве стенки микросферы до высокой температуры в 400°С для увеличения ее проницаемости и получения требуемого количества водорода; увеличивается быстродействие системы, т.к. масса микросфер достаточно инерционна (в тепловом смысле) из-за низкой теплопроводности микросфер в условиях повышенной температуры, т.е. управляющее воздействие осуществляется на внешний слой микросферы, где расположен металлогидрид, а не на саму стенку, т.к. в этом нет неободимисти; водород и при невысокой температуре (даже при комнатной) поступает из внутренней полости в слой металлогидрида.

Пример

Аккумулятор водорода заполняют микросферами со следующими параметрами:

диаметр микросферы (R1) - 100 микрон;

толщина стенки (оболочки) - 1 микрон (R2-R1);

толщина слоя покрытия гидрида металла - 0,2 микрона (R3-R2);

При давлении водорода, которым заполняется микросфера, равном 1000 атм, плотность водорода внутри микросфер составляет 50 г/л.

Рассчитаем весовое содержание водорода в микросфере, для чего определим объемы микросферы, водорода и оболочки (стенки).

4/3 я (513-503)- 4/3π (132651-12500)=4/3π 7651.

Вес водорода - 4/3π 125000×50=4/3π 6250000.

вес оболочки - 4/3π 7651×2200=4/3π 16832200.

Отношение веса водорода к весу оболочки =6250000/16832200=0,37 т.е. 37%.

Для металлогидрида принимаем объемное содержание водорода 80 г/л, весовое содержание 4%, для LaNi плотность - 9,0. Наносим покрытие толщиной 0,2 микрона. Объем покрытия равен

4/3π(51,23-513)=4/3π(134217,7-132651)=4/3π1566,7.

Вес покрытия 4/3π 1566,7×9000=4/3π 14100300.

Определим массовое (весовое) содержание водорода в микросфере

37×132651+4×1566,7/134217,7=0,366, т.е. 36,6%.

Определим объемное содержание водорода в микросфере

80×1566,7+50×125000/134217,7=47,5 г/л.

Сравнение полученных результатов с данными таблицы показывает, что по всем показателям предлагаемое решение превосходит требования Министерства энергетики США к аккумуляторам водорода.

Таблица
Параметр 2007 г. 2010 г. 2015 г.
Весовое содержание водорода, кг/H2/кг 0,045 0,06 0,09
Объемное содержание водорода, кг/Н2 0,036 0,045 0,081
Время до создания полного потока водорода при 20°С, с 4 4 0,5
Время заполнения аккумулятора, мин 10 3 2,5

Аналогичные расчеты были произведены для прототипа, т.е. для микросфер диаметром 100 микрон, с толщиной стенки 10 микрон, (плотность от 1 до 2 г/см3) во внутренней полости расположены зерна сплава тантала и никеля.

Весовое содержание водорода в такой микросфере составляет 5%, объемное содержание 17%. При одинаковом времени заполнения аккумулятора, равному 3 минутам, время до создания полного рабочего потока водорода в предлагаемом решении составило 3 секунды, а в известном 8 секунд.

Таким образом, на основании технических характеристик заявляемое техническое решение превосходит известные в технике решения.

Аккумулятор водорода, содержащий полые микросферы и сплав, образующий с водородом гидрид металла, отличающийся тем, что внутренняя полость микросферы выполнена свободной, сплав металла нанесен на наружную поверхность микросферы, а стенка микросферы выполнена проницаемой для водорода при комнатной температуре.



 

Похожие патенты:

Изобретение относится к водородной энергетике - аккумулированию, хранению и высвобождению водорода для использования в транспортных и стационарных энергетических установках.

Изобретение относится к области водородной энергетики - аккумулированию и хранению водорода, который в настоящее время используется в химическом, транспортном машиностроении и других отраслях промышленности.

Изобретение относится к устройствам для хранения различных веществ, в том числе лекарств, ядов, биологических структур, химически активных соединений, радиоактивных веществ, а также любых других соединений, находящихся в жидком, газообразном или растворенном состоянии.

Изобретение относится к средствам хранения и подачи газов, в частности к аккумулированию и хранению водорода, использованию водорода в качестве топлива, в частности для автомобилей.

Изобретение относится к средствам для очистки, хранения и подачи газов, преимущественно водорода и его изотопов, а также гелия, аргона и других, может быть использовано в лазерной технике, в микроэлектронике, а также в автомобильном транспорте.

Изобретение относится к области водородной энергетики - аккумулированию, хранению и высвобождению водорода для использования в автомобилях и стационарных энергетических установках.

Изобретение относится к области водородной энергетики аккумулированию и хранению водорода, который в настоящее время используется в химическом, транспортном машиностроении и других отраслях промышленности.

Изобретение относится к тем областям науки и техники, где требуется компактное хранение, содержание и транспортировка газов, в частности метана и водорода, которые широко используются в газовой, химической промышленности, энергетике и транспорте.

Изобретение относится к области водородной энергетики - аккумулированию и хранению водорода. .

Изобретение относится к области водородной энергетики - аккумулированию и хранению водорода, который в настоящее время используется в химическом и транспортном машиностроении, а также других отраслях промышленности.
Изобретение относится к области химии и может быть использовано в водородной энергетики для хранения и транспортировки водорода или гелия

Изобретение относится к машиностроению, в частности к двигателестроению и заправочной технике, а именно к способам аккумулирования, хранения и подачи водорода с использованием гидридообразующих соединений

Изобретение относится к устройствам обеспечения газообразным топливом двигателей средств передвижения

Изобретение относится к области создания автономных источников энергии, систем хранения, выделения и транспортировки газообразных продуктов и может быть использовано в автономных и передвижных системах энергоснабжения

Изобретение относится к устройству и картриджу для хранения сжатого газообразного водорода

Изобретение относится к области водородной энергетики и может быть использовано для хранения, транспортировки и распределения (подачи) водорода в топливных элементах и других энергетических установках

Изобретение относится к водородной энергетике, а именно к аккумуляторам водорода, применяющимся в различных отраслях промышленности и техники. Аккумулятор водорода состоит из бака, погруженного в сосуд Дьюара, и устройства для закачки и выпуска водорода. Бак выполнен в виде круглых труб 1 или цельнометаллической конструкции с продольными ячейками в форме шестиугольников 2. Трубы 1 и ячейки 2 герметически запечатываются цилиндрическими или шестиугольными донышками 3, а с другого конца входят во втулки-горлышки 5, скрепляемые с изогнутыми трубами 6 меньшего диаметра, сходящимися в едином ресивере 7 или 8. Ресивер 7 представляет собой трубу, расположенную между круглыми трубами 1, а ресивер 8 выполняется в форме шара или цилиндра. Сосуд Дьюара состоит из тепловой изоляции 9, внутренней емкости 10 и внешней емкости 11. Трубы 1 или ячейки 2 бака заполняются насыпным материалом 21 (углеродными нанотрубками, графеном или активированным углем). Заявляемый аккумулятор водорода обеспечивает хранение водорода значительно большей массы, чем известные конструкции аккумуляторов такого типа. В частности он обеспечивает в сто раз большее количество циклов заправки аккумулятора (15000) по сравнению баллонами высокого давления из нержавеющей стали, покрытыми оболочкой из органопластиков (150 циклов заправки). 8 з.п. ф-лы, 6 ил.

Предложены устройства, системы и способы введения и/или выведения вещества в сорбционную среду и из сорбционной среды. Вещество имеется на крае сорбционной среды, которая включает параллельные слои сорбционного материала. Для введения посредством абсорбции и/или адсорбции вещества в сорбционную среду от сорбционной среды отводится тепло, к сорбционной среде прикладывается напряжение введения, и/или повышается давление, при котором находится сорбционная среда. Для выведения вещества из сорбционной среды в сорбционную среду подводится тепло, к сорбционной среде прикладывается напряжение с полярностью, противоположной полярности напряжения введения, и/или понижается давление, при котором находится сорбционная среда. В некоторых вариантах реализации изобретения сорбционная среда включает поверхностные структуры, которые могут вводить молекулы вещества. Использование изобретения позволит аккумулировать газы при высокой плотности. 6 н. и 7 з.п. ф-лы, 14 ил.

Изобретение относится к зарядным устройствам аккумуляторов водорода и может быть использовано для зарядки указанных аккумуляторов водородом. Зарядное устройство для водородных аккумуляторов из гидрида металлов с высокой степенью пассивирования (алюминий, титан, магний), выполнено из стабилизированного источника электрического тока (1), проводов (2), электролизера (3) и аккумуляторов (4) водорода на основе гидрида алюминия (титана или магния) (5), при этом в электролизере (3) расположен электролит (6) из угольной кислоты H2CO3 в дистиллированной воде, который полностью покрывает два стоящих отдельно друг от друга аккумулятора (4) без внешних корпусов со свободным проникновением электролита (6) в структуру аккумулятора (4) из гидрида металла (5), причем один аккумулятор (4) подсоединен к катоду (7), а второй аккумулятор (8) - к аноду (9), причем на крышке (10) зарядного устройства расположена вертикальная труба (11) с клапаном сброса (12) излишнего давления, создаваемого продуктами электролиза. Образование гидридов в структурах металлов в электролизере под действием теплового поля является техническим результатом заявленного изобретения. 1 ил.

Изобретение относится к способам получения и хранения природного газа в виде газовых гидратов (ГПГ). Способ включает предварительное заполнение судна водоледяной смесью. ГПГ в судне получают путем закачки в него под давлением природного газа и барботирования газа через водоледяную смесь одновременно с закачкой в него водоледяной смеси и осуществлением вибрации с акустической частотой до тех пор, пока ГПГ не заполнят весь объем судна. После этого закачку газа и криогидратной смеси прекращают и хранят ГПГ в судне при постоянных температуре и давлении. Для разложения ГПГ на воду и газ в верхней части судна понижают давление путем отбора газа из судна и/или поднимают судно вверх для снижения в нем гидростатического давления. По окончании отбора газа судно опускают на исходную глубину, а образовавшуюся после разложения гидратов водоледяную и криогидратную смесь сохраняют до нового заполнения судна ГПГ. Техническим результатом изобретения является создание условий для применения погруженного под воду судна в качестве комбинированного устройства для получения, подводного хранения и разложения ГПГ. 1 ил.
Наверх