Мультитеплотрубный электростатический генератор

Генератор предназначен для использования в теплоэнергетике, например для утилизации вторичных энергоресурсов и низкопотенциальной энергии природных источников. Генератор содержит корпус из диэлектрического материала; к корпусу присоединены верхние обечайки с торцами, заглушенными горячими стенками со вставками из электропроводящего материала с образованием испарительной зоны, и нижние обечайки с торцами, заглушенными холодными стенками с образованием конденсационной зоны. Внутри каждой пары верхней и нижней обечаек помещены цилиндрические кожухи, которые в поочередном порядке заполнены пористым материалом, позволяющим получать положительные и отрицательные заряды в рабочем теле, примыкающим к холодным стенкам и вставкам горячих стенок и соединенным с полосами аналогичного материала на внутренних поверхностях обечаек, горячей и холодной стенок. Коллекторы положительных и отрицательных зарядов снабжены клеммами, а рабочим телом служит диэлектрическая жидкость. Изобретение обеспечивает повышение эффективности электростатического генератора. 7 ил.

 

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в электрическую.

Известен электростатический генератор, содержащий насос, систему трубопроводов, корпус, в который помещены пористые пластины (фитили), изготовленные из материалов, позволяющих получать положительные и отрицательные заряды жидкому диэлектрику (диэлектрической жидкости), прокачиваемому через них, и переносить эти заряды на коллекторы (А.с. СССР № 66073, Мкл. Н02N 3/00, 1940).

Основными недостатками известного устройства являются громоздкость конструкции, затраты энергии для привода циркуляционного насоса, что сужает область его применения и, в конечном счете, снижает его эффективность.

Более близким к предлагаемому изобретению является теплотрубный электростатический генератор, который содержит: корпус, выполненный из диэлектрического материала и состоящий из обечайки, заглушенной с обоих торцов горячей стенкой и холодной стенкой, выполненными из диэлектрического материала, и помещенного внутрь обечайки коаксиально кожуха таким образом, что между его торцами и стенками имеются зазоры, сообщающиеся с каналом транспортировки пара, образующие зоны испарения и конденсации; перегородку, выполненную из диэлектрического материала, делящую полость между кожухом и обечайкой на два отсека, заполненных фитилями, выполненными из разных по своим электрохимическим характеристикам пористых материалов, позволяющих получать положительные или отрицательные заряды в рабочем теле, примыкающим к коллекторам положительных и отрицательных зарядов и снабженных наружными клеммами, причем в качестве рабочего тела используется диэлектрическая жидкость (Патент РФ № 2327055, Мкл. F02N 3/00, 2008).

Основным недостатком известного устройства является малая мощность генератора, обусловленная незначительной теплообменной поверхностью отдельной тепловой трубы и вытекающими отсюда низким количеством утилизируемого тепла и расходом рабочей жидкости, что снижает его эффективность.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является повышение эффективности электростатического генератора.

Технический результат достигается в мультитеплотрубном электростатическом генераторе (МТТЭСГ), который содержит: корпус, выполненный из диэлектрического материала, к которому присоединены верхние обечайки, каждая из которых заглушена со своего торца горячей стенкой с центральной вставкой из электропроводящего материала, образуя испарительную зону и соосно к ним нижние обечайки, каждая из которых заглушена со своего торца холодной стенкой, которые образуют конденсационную зону, также выполненные из диэлектрического материала, цилиндрический кожух, помещенный внутри каждой пары верхней и нижней обечаек коаксиально им и проходящий через корпус таким образом, что между его верхним торцом и горячей стенкой, нижним торцом и холодной стенкой имеются зазоры, при этом цилиндрические кожухи слева направо поочередно заполнены пористыми материалами (фитилями), соединенным с полосами аналогичных материалов (фитилей) на внутренней поверхности верхней и нижней обечаек, горячей и холодной стенок, позволяющего получать положительные и отрицательные заряды в рабочем теле, соответственно, и примыкающими к холодным стенкам и центральным вставкам горячих стенок, которые соединены с фитилями и коллекторами положительных и отрицательных зарядов, снабженных клеммами, причем в качестве рабочего тела используется диэлектрическая жидкость.

На фиг.1-7 представлен предлагаемый мультитеплотрубный электростатический генератор (МТТЭСГ).

МТТЭСГ состоит из корпуса 1, выполненного из диэлектрического материала, к которому присоединены верхние обечайки 2, каждая из которых заглушена со своего торца горячей стенкой 3 с центральной вставкой из электропроводящего материала 4, образуя испарительную зону 5 и соосно к ним нижние обечайки 6, каждая из которых заглушена со своего торца холодной стенкой 7, которые образуют конденсационную зону 8, также выполненные из диэлектрического материала, цилиндрического кожуха 9, помещенного внутрь коаксиально каждой паре обечаек 2 и 6 и проходящего через корпус 1 таким образом, что между его верхним торцом и горячей стенкой 3, нижним торцом и холодной стенкой 7 имеются зазоры 10 и 11, при этом кожухи 9 поочередно, слева направо заполнены пористым материалом (фитилем) 12, позволяющим получать положительные заряды, соединенным с полосами аналогичного фитиля 13, размещенными на внутренней поверхности обечаек 2, 6 и стенок 3, 7 и пористым материалом (фитилем) 14, соединенным с полосами аналогичного фитиля 15, размещенными на внутренней поверхности обечаек 2, 6 и стенок 3, 7, позволяющим получать отрицательные заряды в рабочем теле и примыкающим к холодной стенке 7 и центральной вставке 4 горячей стенки 3, которые соединены с фитилями 12, 14 и с коллекторами положительных и отрицательных зарядов 16 и 17, снабженных клеммами 18, 19, соответственно, причем в качестве рабочего тела используется диэлектрическая жидкость.

В основе работы предлагаемого МТТЭСГ лежат: способность диэлектрических жидкостей подвергаться электризации при движении через трубопроводы и, особенно, через пористые перегородки, в которых величина тока электризации может увеличиться на несколько порядков, и способность пористых перегородок, изготовленных из разных материалов, сообщать движущейся через них жидкости, противоположные заряды (Захарченко В.В. и др. Электризация жидкостей и ее предотвращение. М., Химия, 1975, с.15-25), а также высокая эффективность передачи теплоты в тепловых трубах, которые делятся на три участка: зона испарения (подвода теплоты), адиабатная зона (переноса теплоты) и зона конденсации (отвода теплоты), покрытых изнутри фитилем, изготовленным из пористого материала и частично заполненных рабочим телом (жидкостью) - переносчиком теплоты, в качестве которой используются вода, спирты и др. органические жидкости, хладоны, жидкие металлы и т.д. (Харитонов В.В. и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. Минск. Выш. школа, 1988, с.106).

Предлагаемый МТТЭСГ работает следующим образом. Предварительно, перед началом работы из полостей корпуса 1 и обечаек 2, 6 МТТЭСГ удаляют воздух и закачивают рабочую жидкость-диэлектрик с удельным электрическим сопротивлением не менее (10-12) Ом·м, которую также выбирают в зависимости от температурного потенциала холодной и горячей сред (штуцеры для удаления воздуха и подачи рабочей жидкости на фиг.1-7 не показаны), в количестве, большем объема пор фитилей 12, 14 и 13, 15 на величину конденсата пара, занимающего внутреннюю полость устройства. Клеммы 17 и 19 соединяют с потребителем тока, после чего корпус 1 МТТЭСГ устанавливают таким образом, чтобы зона испарения (наружные поверхности обечаек 2 и стенок 3) контактировала с горячей средой, а зона конденсации (наружные поверхности обечаек 6 и холодных стенок 7) - с холодной. В результате нагрева обечаек 2 и горячей стенки 3 в испарительной зоне происходит испарение рабочей жидкости, скорость которой интенсифицируется за счет наличия на испарительной поверхности полос фитилей 13 и 15 (Тепловые трубы и теплообменники: от науки к практике. Сборник научных трудов. М., 1990, с.106), образуется пар, который через полости корпуса 1 попадает в зону конденсации 8, конденсируется там за счет контакта наружной поверхности обечаек 6 и стенок 7 с холодной средой с повышенной скоростью за счет наличия полос фитилей 13 и 15, после чего образовавшийся конденсат диэлектрической жидкости всасывается порами фитилей 12 и 14 через щель зазоров 11 и под воздействием капиллярных сил и испарения в зоне испарения адиабатно транспортируется через поры фитилей 12 (изготовленных, например, из металлической сетки) и 14 (изготовленных, например, из стекловолокнистой сетки), где жидкость электризуется с приобретением положительных и отрицательных зарядов, соответственно, и поступает через электропроводящие центральные вставки 4 в коллекторы положительных и отрицательных зарядов 16 и 17, разряжается на них, создавая разность потенциалов на клеммах 18 и 19, а разрядившаяся жидкость через зазоры 10 поступает в зону испарения, где происходит вышеописанный процесс испарения, и цикл повторяется.

Таким образом, предлагаемый МТТЭСГ обеспечивает практическую возможность получения значительного количества электрической энергии за счет утилизации вторичных тепловых энергоресурсов различного потенциала (энергии сбросных вод, отходящих газов и т.д.), тепловых ресурсов природных источников (энергии солнца, воды и т.д.), что обеспечивает его высокую эффективность.

Мультитеплотрубный электростатический генератор, включающий корпус, состоящий из обечайки, заглушенной с обоих торцов горячей и холодной стенками, выполненного из диэлектрического материала и помещенного внутрь обечайки коаксиально кожуха таким образом, что между его верхним торцом и горячей стенкой, нижним торцом и холодной стенкой имеются зазоры, зоны испарения и конденсации, фитили, изготовленные из пористых материалов, позволяющих получать положительные и отрицательные заряды в рабочем теле и касающиеся холодной и горячей стенок, коллекторы положительных и отрицательных зарядов, снабженные наружными клеммами, причем в качестве рабочего тела используется диэлектрическая жидкость, отличающийся тем, что к корпусу присоединены верхние обечайки, каждая из которых заглушена со своего торца горячей стенкой с центральной вставкой из электропроводящего материала, образуя испарительную зону, и соосно к ним нижние обечайки, каждая из которых заглушена со своего торца холодной стенкой, которые образуют конденсационную зону, цилиндрические кожухи помещены внутри каждой пары верхней и нижней обечаек, при этом цилиндрические кожухи поочередно, слева направо заполнены фитилями, примыкающими к холодным стенкам и центральным вставкам горячих стенок, соединенными с полосами аналогичных фитилей, размещенными на внутренней поверхности верхней и нижней обечаек, горячей и холодной стенок.



 

Похожие патенты:

Изобретение относится к производству электроэнергии. .

Изобретение относится к твердотельным устройствам для преобразования тепловой энергии в электрическую или к устройствам, использующим электрическую энергию для охлаждения.

Изобретение относится к области энергомашиностроения и позволяет повысить производительность процесса получения статистического электричества. .

Изобретение относится к способам получения электрической энергии. .

Изобретение относится к плазменной технике, предназначенной для аккумуляции энергии в среде плазмы с последующим ее отводом и использованием. .

Изобретение относится к способу и конструкции устройства, предназначенного для получения электроэнергии. .

Изобретение относится к области производства энергии, в частности тепловой, которая выделяется из электропроводящего материала как энергия, эквивалентная энергии связи атомов в проводнике, при термоэлектронном взрыве последнего.

Изобретение относится к электротехнике и может быть использовано для получения электрической энергии путем преобразования тепловой энергии плазмы в электрическую.

Изобретение относится к области машиностроения, где используются тепловые генераторы, и представляет гидравлический кавитационный аппарат, построенный на базе статора электродвигателя переменного 3-х фазного тока

Изобретение относится к области преобразования тепловой энергии в электрическую
Изобретение относится к области производства энергии, в частности тепловой, которая выделяется из материала при пропускании через него электрического тока

Изобретение относится к электротехнике и может быть использовано для производства электрической энергии для малой энергетики и локальных электросетей с использованием как высокопотенциального, так и низкопотенциального тепла, в частности солнечного

Изобретение относится к энергетике и транспорту, а именно к получению электрической энергии от химической реакции детонационного сгорания топлива

Изобретение относится к экологически чистому методу получения электроэнергии и может быть использовано для любого вида электроснабжения как бытового, так и промышленного

Электронный генератор электроэнергии относится к электротехнике, а именно к производству электроэнергии. Электронный генератор электроэнергии содержит реактор электронной плазмы (1), заполненный рабочей средой (разреженный инертный газ с примесью материалов с малой энергией ионизации), в котором установлены катод (2) и анод (3) электрической дуги, управляющие аноды (4), рабочие аноды (5) и поляризующиеся электроды (6), соединенные с концами первичной обмотки (7) силового трансформатора (12). С концами обмотки (7) соединены также конденсаторы (11) резонанса токов на рабочей частоте и рабочие аноды (5), которые через регулируемые делители напряжения (10) соединены с управляющими анодами (4). а средняя точка (8) первичной обмотки (7) заземлена и соединена с катодом электрической дуги, анод электрической дуги соединен с плюсовой клеммой регулируемого преобразователя напряжения (РПН) (14), минусовая клемма которого заземлена. Входы переменного напряжения РПН соединены с соответствующими выходами трансформатора собственных нужд (ТСН) (16), к ТСН подключен также блок запуска электрической дуги (15), а вход ТСН соединен с вторичной обмоткой (13) силового трансформатора, включенной в сеть потребителей электроэнергии. Технический результат - повышение надежности работы и снижение потерь энергии. 1 ил.

Изобретение относится к энергомашиностроению, к теплообменной аппаратуре и может быть использовано для конденсации отработанного пара без использования хладоагента с трансформацией части тепловой энергии в электрическую. Технический результат состоит в повышении эффективности. Электростатический конденсатор-электрогенератор содержит корпус с верхней и нижней крышками. Патрубки входа отработанного пара, выхода конденсата, воздушный патрубок выполнены из диэлектрического материала. Между верхней и нижней крышками размещены вертикальные прямоугольные перегородки, образуя паровые камеры и камеры сбора конденсата. Каждая вертикальная перегородка состоит из нескольких вертикальных перфорированных пластин, размещенных с зазором и изготовленных из гидрофильного диэлектрического материала. Отверстия в пластинах выполнены в виде горизонтальных конических капилляров, расположенных таким образом, что большие отверстия конических капилляров предыдущей вертикальной пластины направлены в сторону паровой камеры, а малые - в сторону камеры сбора конденсата. Наружная поверхность каждой указанной пластины всех вертикальных перегородок покрыта слоем перфорированного электропроводящего материала, соединенного снизу с одноименными электродами, соединенными, в свою очередь, с проводами одноименных коллекторов и клеммами. Рабочим телом процесса получения электричества является парожидкостная смесь. 4 ил.

Изобретение относится к электротехнике и может быть использовано для генерирования электроэнергии. Технический результат состоит в повышении выходной электроэнергии. Дисперсные структуры, использующие передачу заряда посредством газа и предназначенные для использования в электрических генераторах, содержат множество частиц, содержащих пустоты между первой и второй противоположными поверхностями упомянутых частиц. По меньшей мере, часть упомянутых противоположных поверхностей модифицируют таким образом, что способность передавать заряд упомянутых первых противоположных поверхностей отличается от способности передавать заряд упомянутых вторых противоположных поверхностей. 5 н. и 18 з.п. ф-лы, 12 ил., 11 табл.

Изобретение относится к тепловой защите летательных аппаратов. Крыло гиперзвукового летательного аппарата включает катод, состоящий из внешней оболочки крыла, анод, состоящий из слоя восприятия электронов и токопроводящей подложки анода. Анод через слой электроизоляции находится в термическом контакте с бортовой системой охлаждения и электрически последовательно через потребителей электрической энергии связан с катодом. Между анодом и катодом на входе в межэлектродный зазор установлен источник рабочего тела, сверхзвуковое щелевое сопло из электронепроводящего материала, сверхзвуковой щелевой диффузор из электронепроводящего материала. Выходное отверстие сверхзвукового щелевого сопла через межэлектродный зазор соединено с входным отверстием сверхзвукового щелевого диффузора, у которого выходное отверстие через вспомогательный анод-сетку, обратный клапан и устройство передачи энергии потоку рабочего тела посредством трубопровода соединено с входным отверстием сверхзвукового щелевого сопла. Эмиссионный слой и слои восприятия электронов анода и вспомогательного анода-сетки выполнены из материала с высокими эмиссионными характеристиками. Изобретение направлено на повышение надежности и долговечности крыла большого удлинения. 1 з.п. ф-лы, 1 ил.
Наверх