Трехосный микромеханический измеритель параметров движения

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в пилотажных системах управления при измерении угловых скоростей и линейных ускорений. Измеритель содержит корпус в виде шестигранного куба с базовыми поверхностями на боковых гранях, обеспечивающими ортогональность установки измерительных осей микромеханических гироскопов и акселерометров, и электронные субблоки в виде печатных плат с размещенными на них радиоэлементами, микромеханическими гироскопами и акселерометрами, установленные на базовых поверхностях радиоэлементами внутрь корпуса. Печатные платы электронных субблоков выполнены крестообразной двухступенчатой формы. На выступающих частях первой ступени печатных плат, со стороны расположения радиоэлементов, установлены микроразъемы, а выступающие части второй ступени платы служат для установки субблоков на базовых поверхностях корпуса. Изобретение позволяет повысить точность измерений параметров движения. 4 ил.

 

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в пилотажных системах управления при измерении угловых скоростей и линейных ускорений [1-4].

Известны трехосные микромеханические измерители угловых скоростей и линейных ускорений, в которых в качестве корпуса, обеспечивающего ортогональную установку измерительных осей микромеханических чувствительных элементов, используется шестигранный куб [1]. Основными недостатками такой конструкции являются повышенные значения шумовых составляющих в полезном сигнале, вызванных наличием соединительных кабелей, и необходимость установки дополнительного кожуха для защиты радиоэлементов от внешних воздействий.

Прототипом изобретения является трехосный микромеханический измеритель параметров движения, содержащий корпус в виде шестигранного куба с базовыми поверхностями на боковых гранях, обеспечивающими ортогональность установки измерительных осей микромеханических гироскопов и акселерометров, и электронные субблоки в виде печатных плат с размещенными на них радиоэлементами, микромеханическими гироскопами и акселерометрами, установленные на базовых поверхностях радиоэлементами внутрь корпуса [2].

Основным недостатком рассмотренной конструкции является необходимость введения внешнего кабеля для электрического соединения субблоков. Это приводит к появлению дополнительных шумов в полезном сигнале измерителя, вызванных наличием кабельного соединения субблоков, а следовательно, и к снижению точности измерений и к усложнению конструкции измерителя.

Техническим результатом изобретения является повышение точности измерений параметров движения и совершенствование конструкции измерителя.

Указанный технический результат достигается тем, что в трехосном микромеханическом измерителе параметров движения, содержащем корпус в виде шестигранного куба с базовыми поверхностями на боковых гранях, обеспечивающими ортогональность установки измерительных осей микромеханических гироскопов и акселерометров, и электронные субблоки в виде печатных плат с размещенными на них радиоэлементами, микромеханическими гироскопами и акселерометрами, установленные на базовых поверхностях радиоэлементами внутрь корпуса, печатные платы электронных субблоков выполнены крестообразной двухступенчатой формы, на выступающих частях первой ступени которых, со стороны расположения радиоэлементов, установлены дополнительно введенные электрические соединительные микроразъемы, а выступающие части второй ступени платы служат для установки субблоков на базовых поверхностях корпуса измерителя, при этом внутренний контур боковых граней повторяет форму внешнего контура печатных плат субблоков, а внешние границы базовых поверхностей, на которых установлены субблоки, равноудалены от линий пересечения ортогональных базовых плоскостей на длину выступающей части первой ступени платы.

Сущность изобретения поясняется чертежами.

На фиг.1 показана конструкция корпуса трехосного микромеханического измерителя параметров движения, где 1 - корпус, 2 - базовые поверхности.

На фиг.2 показан электронный субблок чувствительных элементов трехосного микромеханического измерителя параметров движения, где 3 - печатная плата, 4 - микромеханический гироскоп, 5 - микромеханический акселерометр, 6 - микроразъем, 7 - выступающие части первой ступени платы, 8 - выступающие части второй ступени платы.

На фиг.3 показан разрез корпуса трехосного микромеханического измерителя параметров движения по А-А, демонстрирующий схему формирования базовых поверхностей корпуса и установку на них печатных плат субблоков.

На фиг.4 показана схема сборки электронных субблоков в корпусе трехосного микромеханического измерителя параметров движения.

Техническая реализация заявленной конструкции представляет собой следующее.

Корпус 1 трехосного микромеханического измерителя параметров движения выполнен в виде шестигранного куба с базовыми поверхностями 2, обеспечивающими ортогональность измерительных осей микромеханических гироскопов и акселерометров (фиг.1). Базовые плоскости образуют базовый шестигранник, на котором формируются базовые установочные поверхности (фиг.3). Базовые поверхности являются частью базовых плоскостей. Внешние границы базовых поверхностей равноудалены от линии пересечения базовых плоскостей на расстояние L, равное длине выступающей части первой ступени печатной платы, что обеспечивает неразрывность граней кубического корпуса и соединение микроразъемов электронных субблоков при сборке измерителя (фиг.4).

Печатная плата 3 выполнена крестообразной двухступенчатой формы (фиг.2). На плате установлены микромеханический гироскоп 4, микромеханический акселерометр 5, микроразъем 6 и радиоэлементы сервисной электроники. Микроразъем 6 установлен на выступающей части 7 первой ступени платы со стороны расположения радиоэлементов. Длина выступающей части первой ступени 7 равна L. Выступающие части 8 второй ступени платы служат для установки субблока на базовые поверхности 2 корпуса измерителя (фиг.1). В них выполнены круглые отверстия для крепежных винтов.

Внутренний контур боковых граней корпуса (фиг.1) повторяет форму внешнего контура печатных плат субблоков (фиг.2), а внешние границы базовых поверхностей корпуса, на которых устанавливаются субблоки, равноудалены от линий пересечения ортогональных базовых плоскостей на величину L, равную длине выступающей части первой ступени 7 платы 3 (фиг.2).

На фиг.3 штриховой линией отмечены двухступенчатые платы, установленные на базовых поверхностях 2 корпуса 1. Базовые поверхности под установку субблоков показаны в виде четырех прямоугольников с круглыми отверстиями посередине.

При установке электронных субблоков вторыми выступающими частями 8 печатных плат 3 на базовые поверхности 2 корпуса 1 измерителя микроразъемы соседних субблоков, установленные на первых выступающих частях 7 плат 3, войдут друг в друга, обеспечивая электрическое соединение субблоков без внешних навесных кабелей (фиг.4).

Использование изобретения позволило создать прибор с минимальными габаритными размерами 40×40×40 мм защищенным от внешних воздействий, в нем электрическая связь электронных субблоков обеспечивается без навесных соединительных кабелей, тем самым устраняя дополнительные помехи, наводимые в этом кабеле и повышая точность прибора. При минимальных габаритных размерах прибор обеспечивает измерение угловых скоростей и линейных ускорений по трем ортогональным осям.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Трехосный датчик ускорений и угловых скоростей, ЗАО «Аргуссофт компани»/http://components.argussoft.ru

2. Collins AHS - 3000, Attitude Heading Reference System/www.rockwellcollins.com.

3. Суминов В.М., Галкин В.И. Состояние и перспективы развития микромеханических гироскопов. Научные труды «МАТИ», Российский государственный технологический университет им. К.Э.Циолковского - МАТИ, Вып.10(82). - М: ИЦ МАТИ, 2006. стр.154-160.

4. Распопов В.Я. Микромеханические приборы: Учебное пособие, 2-е изд. перераб. и доп. Тульский государственный университет. Московский государственный Технологический ун-т им. К.Э.Циолковского. - Тула: «Гриф и К», 476 с, стр.334-339,2004.

Трехосный микромеханический измеритель параметров движения, содержащий корпус в виде шестигранного куба с базовыми поверхностями на боковых гранях, обеспечивающими ортогональность установки измерительных осей микромеханических гироскопов и акселерометров, и электронные субблоки в виде печатных плат с размещенными на них радиоэлементами, микромеханическими гироскопами и акселерометрами, установленные на базовых поверхностях радиоэлементами во внутрь корпуса, отличающийся тем, что печатные платы электронных субблоков выполнены крестообразной двухступенчатой формы, на выступающих частях первой ступени которых со стороны расположения радиоэлементов установлены дополнительно введенные электрические соединительные микроразъемы, а выступающие части второй ступени платы служат для установки субблоков на базовых поверхностях корпуса измерителя, при этом внутренний контур боковых граней повторяет форму внешнего контура печатных плат субблоков, а внешние границы базовых поверхностей, на которых установлены субблоки, равноудалены от линий пересечения ортогональных базовых плоскостей на длину выступающей части первой ступени платы.



 

Похожие патенты:

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения.

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения.

Изобретение относится к области измерительной и микросистемной техники, а более конкретно к интегральным измерительным элементам величин ускорения. .

Изобретение относится к микросистемной технике, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения. .

Изобретение относится к области приборостроения и может быть использовано в системах ориентации, навигации и управления таких подвижных объектов, как самолет, корабль, автомобиль, микроробот и другие, где требуется информация об угловых скоростях и кажущихся ускорениях.

Изобретение относится к области гироскопического приборостроения и может найти применение в гироскопах, гироскопических инклинометрах и гирокомпасах. .

Изобретение относится к измерительной технике. .

Изобретение относится к области приборостроения, а именно к приборам ориентации, навигации и систем управления подвижных объектов, и предназначено для измерения угловой скорости и линейного ускорения

Изобретение относится к области микросистемной техники, в частности к микромеханическим акселерометрам

Предложены способ и устройство измерения ускорения силы тяжести g. В способе определяют угловую скорость вращения волчка и угловую скорость прецессии волчка в прямом и обратном положениях волчка. В качестве волчка используют насаженный на ось диск со сквозными отверстиями в форме сегмента. Угловую скорость вращения волчка определяют по количеству пересечений светового потока сегментами диска в единицу времени. Угловую скорость прецессии волчка определяют по количеству пересечений светового потока осью волчка. Ускорение силы тяжести вычисляют по формуле g = R 2 ( ω 1 ω 2 + ω 3 ω 4 ) 2 L , где ω1 - угловая скорость вращения волчка и ω2 - угловая скорость прецессии волчка в прямом положении, а ω3 - угловая скорость вращения волчка и ω4 - угловая скорость прецессии волчка в обратном положении, L - длина оси волчка, R-радиус диска. Техническим результатом является повышение точности определения ускорения силы тяжести. 2 н.п. ф-лы, 2 ил.

Трехосный микромеханический блок чувствительных элементов содержит корпус в виде шестигранного куба с базовыми поверхностями на боковых гранях, электронные субблоки в виде печатных плат с крышками. Печатные платы выполнены в виде восьмиугольников и имеют симметрично расположенные выступающие части с установленными на них микроразъемами. Печатные платы установлены так, чтобы их электронные компоненты были внутри корпуса. Внешние границы базовых поверхностей шестигранного куба равноудалены от линий пересечения ортогональных базовых плоскостей на длину выступающей части платы. Крышки субблока равномерно выступают за контуры плат по всему периметру. На каждой боковой гране шестигранного куба выполнена площадка шириной, равной выступающей за печатную плату крышки. Обеспечивается повышение точности измерений и усовершенствование конструкции измерителя. 5 ил.
Наверх