Астронавигационная система

Изобретение относится к области астронавигационных систем, предназначенных для определения стабилизированных угла места и курсового угла на астроориентир, на основании которых определяют поправку курсоуказания и свое местоположение. Техническим результатом изобретения является минимизация числа чувствительных элементов, обеспечивающих заданную погрешность определения поправки курсоуказания и своего местоположения. Система содержит триаду акселерометров, визирующее устройство с датчиками нестабилизированных угла места и курсового угла, блок первичной выработки углов качки, блок прямого преобразования с тремя входами и двумя выходами и блок обратного преобразования с двумя входами, а также Фурье-анализатор с двумя входами и суммирующее устройство. Акселерометры соединены с первым входом Фурье-анализатора и блоком первичной выработки углов качки, выход которого соединен с блоком прямого преобразования. Датчики угла соединены со вторыми входами блоков прямого и обратного преобразований. Соответствующие входы и выходы блоков прямого и обратного преобразований соединены так, что образуется замкнутый контур уточнения углов качки. Выход блока обратного преобразования соединен со вторым входом Фурье-анализатора и через суммирующее устройство - с выходом Фурье-анализатора, образуя контур выработки поправок. Первый выход блока прямого преобразования является выходом всей системы. 1 ил.

 

Изобретение относится к области астронавигационных систем [Г.Квазиус, Ф.Маккэнлесс. "Проектирование систем астронавигации". - М.: Мир, 1970, с.127-133], предназначенных для определения стабилизированных угла места и курсового угла на астроориентир, на основании которых определяют поправку курсоуказания и свое местоположение.

Известны системы, например "Оптический измерительный прибор с угломером" по патенту RU №2089852 (БИ №25 10.09.97), в которых плоскость горизонта строится непосредственно в месте расположения визирующего устройства с помощью пузырькового уровня. Недостатком таких секстанов является сложность определения положения горизонта на фоне колебаний пузырька.

Для сглаживания колебаний чувствительного элемента используются гироскопы и интеграторы, например в "Гироскопическом интегрирующем морском секстане" ГИМС-3 или "Интегрирующем авиационном секстане" ИАС-1 [Радкевич Л.П., Беляева М.П. "Ручные навигационные секстаны" "Оптико-механическая промышленность", 1975, №2, с.58-59].

Недостатком всех этих устройств является невозможность определения курсового угла с точностью, необходимой для определения поправки курсоуказания.

Известны принятые за прототип астроинерциальные системы [Г.Квазиус, Ф.Маккэнлесс. "Проектирование систем астронавигации". - М.: Мир, 1970, с.127-133], в которых высота светила измеряется относительно приборной плоскости горизонта, создаваемой инерциальной системой. Основным недостатком прототипа является то, что он помимо оптико-механической части оснащен достаточно сложной и дорогой системой с гироскопами и акселерометрами, создающими большой объем избыточной информации, не обеспечивающей эквивалентного снижения погрешностей.

Задача, которую решает данное изобретение, заключается в минимизации числа чувствительных элементов, обеспечивающих заданную погрешность определения поправки курсоуказания и своего местоположения.

Поставленная задача решается тем, что в непосредственной близости к визирующему устройству устанавливается ортогональная триада акселерометров.

Акселерометры так же, как и установленные на осях карданова подвеса датчики угла, соединены с вычислительным устройством, содержащим блок первичной выработки углов качки, блок прямого преобразования с тремя входами и двумя выходами, Фурье-анализатор с двумя входами, блок обратного преобразования с двумя входами и суммирующее устройство.

Перечисленные элементы соединены между собой, образуя систему вычисления высоты светила и курсового угла на него, выходом которой является первый выход блока прямого преобразования. Акселерометры соединены с первым входом Фурье-анализатора и с блоком первичной выработки углов качки, выход которого соединен с первым входом блока прямого преобразования, второй вход последнего, как и второй вход блока обратного преобразования, соединен с датчиками углов. Замкнутый контур уточнения углов качки образуется за счет последовательного соединения второго выхода блока прямого преобразования с первым входом блока обратного преобразования и выхода последнего - с третьим входом блока прямого преобразования. Блок обратного преобразования с Фурье-анализатором и суммирующим устройством образуют контур поправок путем соединения выхода блока обратного преобразования с вторым входом Фурье-анализатора, выход которого подключен к суммирующему устройству.

Сущность изобретения поясняется чертежом, на котором представлена структурная схема астронавигационной системы. В ее состав входят:

1 - визирующее устройство в кардановом подвесе, содержащее матричный преобразователь ([О.Н.Анучин, И.Э.Комарова, Л.Ф.Порфирьев. «Бортовые системы навигации и ориентации искусственных спутников Земли». - СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 2004, с.238-245]), предназначенный для определения положения объекта относительно оси визирования, определяемого углами ΔЕk, Δqk;

2 - акселерометры с горизонтальной осью чувствительности, предназначенные для измерения ускорений Wx, Wy, содержащих информацию об углах е, ρ наклона вилки карданова подвеса относительно горизонта;

3 - акселерометр с вертикальной осью чувствительности (вертикальный акселерометр), предназначенный для измерения ускорения Wz, содержащего информацию об ускорении орбитального движения W (орбитальном движении корабля);

4 - датчики нестабилизированных углов места Еk и курсового угла qk, измеренных в наклонной системе координат ([С.С.Ривкин "Стабилизация измерительных устройств на качающемся основании". - М.: Наука, 1978, с.123]), предназначенные для измерения углов поворота карданова подвеса;

5 - блок первичной выработки углов качки, предназначенный для грубого определения углов качки ;

6 - блок прямого преобразования ([С.С.Ривкин "Стабилизация измерительных устройств на качающемся основании". - М.: Наука, 1978, с.56]), предназначенный для вычисления стабилизированных угла места и курсового угла , измеряемых в горизонтной системе координат. В этом блоке производится осреднение мгновенных значений углов Еc и qc для получения их математических ожиданий . Для улучшения сходимости процесса вычислений осуществляется осреднение накопленных в процессе вычислений значений и получение ;

7 - Фурье-анализатор, предназначенный для выработки поправок на ускорение орбитального движения

после анализа спектрального состава и фазовых сдвигов углов качки и орбитального движения ;

8 - блок обратного преобразования, предназначенный для выработки углов качки е2 и ρ2 на основе полученных значений и

;

9 - суммирующее устройство, предназначенное для добавления поправок, выработанных Фурье-анализатором, в сигнал блока обратного преобразования.

Система работает следующим образом.

В процессе обсервации на астроориентир наводится визирующее устройство 1 (телескоп, антенна и т.д.). Направление на объект определяется с помощью датчиков угла 4 и матричного преобразователя, находящегося в визирующем устройстве 1. Визирующее устройство 1 помещено в двухосный высотно-азимутальный карданов подвес, на осях которого имеются датчики угла высоты Е и курсового угла q 4. На азимутальной оси карданова подвеса в непосредственной близости к визирующему устройству 1 устанавливаются два акселерометра с горизонтальными осями чувствительности 2 и один акселерометр 3 с вертикальной осью чувствительности. Триада акселерометров поворачивается относительно диаметральной плоскости корабля на курсовой угол q. При этом в сигналах акселерометров

где L - отстояние от центра качаний,

W, W - сигналы горизонтальных акселерометров,

W - сигнал вертикального акселерометра,

содержится информация об углах качки в плоскости наклона оси визирования е и в плоскости наклона оси цапф ρ, зашумленная переменными переносными ускорениями и систематической составляющей, зависящей от связи углов качки и ускорения орбитального движения.

Сигналы акселерометров 2, 3 и датчиков угла 4 подаются в вычислитель, состоящий из элементов 5, 6, 7, 8, 9, с целью сглаживания шума и исключения систематических составляющих из сигналов акселерометров 2.

При обсервации происходит накопление массива данных. Вычисления производятся после обсервации. Результаты вычислений относятся к моменту времени, соответствующему середине обсервации.

Поворот карданова подвеса вокруг азимутальной и высотной осей приводит визирующее устройство в положение, при котором его визирная ось направлена на астроориентир с погрешностями ΔЕk и Δqk. Величина этих погрешностей определяется с помощью матричного преобразователя, находящегося в блоке 1. Так как из-за наличия погрешности Δqk оси чувствительности акселерометров 2 не лежат в плоскости визирования объекта, проходящей через направление на светило и азимутальную ось подвеса, необходимо преобразовать показания акселерометров, связав их с этой плоскостью и получив значения ускорений

где [Δqk] - матрица направляющих косинусов, соответствующая повороту на угол Δqk.

В блоке первичной выработки углов качки 5 осуществляется преобразование координат для выполнения вышеуказанного требования, и первичная выработка углов качки е1 - в наклонной плоскости визирования и ρ1 - в вертикальной плоскости, перпендикулярной плоскости визирования.

Вычисленные в блоке 5 углы качки е1, ρ1 подаются в блок прямого преобразования 6, в котором осуществляется вычисление мгновенных значений высоты светила - стабилизированного Ес и курсового угла на светило - стабилизированного qc

При пеленговании астрономических объектов величины Ес и qc изменяются с частотой вращения Земли, следовательно, за время обсервации можно прибегнуть к линейной интерполяции, предположив, что скорость их изменения постоянна, а средние величины, отнесенные к середине интервала обсервации - константы. Эти константы и вычисляются в этом же блоке 6 прямого преобразования. Вычисляя е2 и ρ2 в блоке обратного преобразования 8 по константам и и переменным сигналам датчиков угла Еk и qk, получим новые значения качки, свободные от помехи, вызванной переносным движением.

Систематическая погрешность определяется в Фурье-анализаторе 7 как среднее значение произведения гармонических составляющих углов качки на ускорение орбитального движения с учетом разности фаз. Разделение углов качки на гармонические составляющие и определение амплитуд и фаз качки и орбитального движения осуществляется в этом же блоке 7. Вычисленные погрешности в виде поправок вводятся через суммирующее устройство в сигнал блока 8.

Вычисления в соответствии с приведенной схемой дают колебательно-сходящийся процесс, поэтому для ускорения схождения реализуется в блоке 6 алгоритм, обеспечивающий осреднение результатов 2-3 итераций.

Технико-экономические преимущества заявленной схемы по сравнению с прототипом заключаются в минимизации количества чувствительных элементов, используемых для решения задач определения поправки курсоуказания и своего местоположения методами пеленгования, при сохранении необходимых точностных характеристик системы. Моделирование показало, что погрешности определения высоты и курсового угла уменьшаются, по сравнению с простым осреднением, на два порядка, в частности при углах качки до 12° погрешности не превышают долей угловых минут.

Астронавигационная система, содержащая триаду акселерометров и визирующее устройство с датчиками нестабилизированных угла места и курсового угла, отличающаяся тем, что в систему введен блок первичной выработки углов качки, блок прямого преобразования с тремя входами и двумя выходами, Фурье-анализатор с двумя входами, блок обратного преобразования с двумя входами и суммирующее устройство, причем акселерометры соединены с блоком первичной выработки углов качки, выход которого соединен с первым входом блока прямого преобразования, второй вход которого, как и второй вход блока обратного преобразования, соединен с датчиками углов, Фурье-анализатор установлен с возможностью выработки поправок на ускорение орбитального движения, как среднего значения произведения гармонических составляющих углов качки, определяемых блоком первичной выработки углов качки, второй выход блока прямого преобразования соединен с первым входом блока обратного преобразования, выход которого соединен с третьим входом блока прямого преобразования, образуя замкнутый контур уточнения углов качки, выход блока обратного преобразования соединен также со вторым входом Фурье-анализатора и через суммирующее устройство с выходом Фурье-анализатора, образуя контур выработки поправок, первый выход блока прямого преобразования является выходом всей системы.



 

Похожие патенты:

Изобретение относится к области навигационных измерений и может быть использовано для определения координат местоположения подвижного объекта, например летательного аппарата (ЛА).

Изобретение относится к области обработки данных в бесплатформенных инерциальных навигационных системах (БИНС). .

Изобретение относится к методам и средствам ориентации в пространстве на основе гравиметрических измерений в интересах навигации и непосредственно в геодезической гравиметрии.

Изобретение относится к области измерений векторов скорости и ускорения движущегося объекта и может быть использовано в системах автономного управления и навигации.

Изобретение относится к измерительной технике, а именно к устройствам, содержащим преобразователи угловой скорости и линейного ускорения по нескольким осям. .

Изобретение относится к области измерительной техники и может быть использовано в навигации для определения угловых положений автоматических подводных, надводных и летательных аппаратов, в нефтепромысловой геофизике для определения углового положения буровой скважины.

Изобретение относится к гироскопическому приборостроению и может быть использовано для обеспечения навигации морских, воздушных и наземных объектов. .

Изобретение относится к области измерительной техники и может быть использовано в системах навигации, топопривязки и ориентирования наземных подвижных объектов. .

Изобретение относится к области измерительной техники и может быть использовано в навигации для определения угловых положений автоматических подводных, надводных и летательных аппаратов, в нефтепромысловой геофизике для определения углового положения буровой скважины.

Изобретение относится к области приборостроения и может быть использовано для определения углового положения морских, воздушных и наземных объектов в пространстве

Изобретение относится к способам и устройствам, использующимся при навигации летательных аппаратов, при измерении их ускорения и скорости

Изобретение относится к устройствам, использующимся при навигации летательных аппаратов, при измерении ускорения и скорости

Изобретение относится к измерительной технике в гироскопических системах ориентации и навигации подвижных объектов различных типов и может быть использовано для малогабаритных морских и наземных объектов

Изобретение относится к измерительной технике и предназначено для измерения углового положения изделия

Изобретение относится к навигации и может быть использовано, например, в качестве компаса и для определения севера. Способ определения курса осуществляется с помощью инерциального устройства (1), содержащего, как минимум, один вибрационный угловой датчик (3) с резонатором, связанным с детекторным устройством и устройством для ввода данного резонатора в состояние вибрации, соединенными с управляющим устройством, служащим для обеспечения первого режима работы, при котором вибрация может свободно изменяться в угловой системе координат резонатора, и второго режима работы, при котором поддерживается определенный угол колебаний вибратора в системе координат резонатора. Способ включает в себя управление указанным датчиком во втором режиме работы для сохранения заданного электрического угла поворота, соответствующего наименьшей величине погрешности датчика, и управление указанным датчиком в первом режиме работы для измерения курса и управления указанным датчиком во втором режиме работы после измерения курса и до следующего измерения с целью сохранения заданного электрического угла поворота. Изобретение позволяет ограничить нежелательное влияние режима прецессионного гироскопа на точность измерений. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения и может найти применение в процессах контроля датчиков первичной информации в составе бесплатформенной инерциальной навигационной системы (БИНС) в наземных условиях. Технический результат - повышение достоверности. Для этого оценку ошибок и контроля датчиков первичной информации (ДПИ) в составе БИНС производят путем установки БИНС на платформу с основанием, осуществляют начальную выставку БИНС, после чего переводят ее в режим автономной работы. В этом режиме БИНС последовательно поворачивают на определенные углы по крену и тангажу, после чего производится допусковый контроль ошибок БИНС. Устройство для осуществления способа состоит из основания 1, на котором расположена платформа 2 для установки контролируемой БИНС. Основание 1 выполнено в виде поворотной рамы, ось 5 вращение которой перпендикулярна оси 7 вращения поворотной платформы 2. На осях 5 и 7 вращения основания 1 и платформы 2 установлены исполнительные приводы для задания углов поворота контролируемой БИНС по крену и тангажу. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения, а именно к средствам измерения угловой скорости в инерциальных навигационных системах. Канал измерения угловой скорости инерциальной навигационной системы содержит датчик угловой скорости (ДУС), аналого-цифровой преобразователь (АЦП), перепрограммируемое постоянное запоминающееся устройство (ППЗУ), устройство контроля, процессор. ДУС содержит гироскоп с датчиком угла и датчиком момента с компенсационной катушкой, усилитель, к выходу которого подключены первый и второй резисторы. В месте соединения этих резисторов подсоединен третий резистор. В устройстве контроля выполнен канал контроля следящей системы ДУС, содержащий ключ, источник опорного напряжения (ИОН). Выход ИОН подсоединен к четвертому резистору, который подсоединен к входу ключа, выход ключа подключен к точке соединения первого и второго резисторов, вход управления ключа подсоединен к процессору, выход ППЗУ подключен к процессору. В ППЗУ записан код напряжения в точке соединения компенсационной катушки с первым резистором в соответствии с расчетным соотношением. Технический результат изобретения - обеспечение контроля работоспособности следящей системы ДУС. 1 ил.

Изобретение относится к области навигационных измерений и может быть использовано для определения координат местоположения подвижного объекта, например, летательного аппарата (ЛА). Технический результат - повышение точности определения пилотажных и навигационных параметров полета ЛА. Для этого осуществляют дополнительную корректировку параметров закона управления инерциального измерительного блока на основе выявленной функциональной зависимости поправочных значений от длительности полета ЛА. Устройство содержит инерциальный измерительный блок, в состав которого входят блок лазерных гироскопов и блок акселерометров, механизм вращения, блок электроники инерциального измерительного блока и интерфейсов, цифровой микропроцессор, блок сопряжения с навигационной информацией, блок вычисления скоростей, блок управления и отображения информации, аналого-цифровой преобразователь и цифроаналоговый преобразователь, шину навигационной информации, блок коррекции, в состав которого входят: счетчик времени, блок определения погрешностей лазерных гироскопов, блок выдачи сигнала коррекции, блок выдачи параметров закона управления, блок-задатчик времени полета летательного аппарата, блок уточнения параметров закона управления, блок суммирования. 2 н.п. ф-лы, 1 ил.
Наверх