Способ хирургической коррекции миопического астигматизма

Изобретение относится к области офтальмологии и может быть использовано для хирургической коррекции миопического астигматизма. Осуществляют воздействие на роговицу путем послойной абляции импульсным излучением несканирующего эксимерного лазера с гауссовым радиальным пространственным распределением плотности энергии в поперечном сечении луча. Длина волны 193-250 нм, диаметр зоны лазерного воздействия 5-9 мм, длительность импульсов 15-30 нс, частота следования импульсов 5-15 Гц. Воздействие производят посредством последовательного уменьшения параметра среднеквадратичного отклонения распределения плотности энергии в каждой из последующих серий импульсов в интервале от 2.7 мм до 1.8 мм. Значение амплитуды плотности энергии в центре симметрии импульса лежит в интервале от 100 мДж/кв.см до 175 мДж/кв.см и сохраняется постоянным во все время проведения серий импульсов. Каждая серия импульсов формирует вогнутые по отношению к исходной поверхности роговицы эллипсоидальные поверхности, расположенные на одной оси. Зона воздействия симметрична относительно оптического центра симметрии роговицы. Определяют положение слабой оси астигматизма и совмещают с ней большую ось формируемых эллипсоидальных поверхностей. Способ позволяет уменьшить травматизацию тканей глаза при одновременном уменьшении послеоперационных осложнений и объема удаляемых глазных тканей. 2 табл., 3 ил.

 

Изобретение относится к области офтальмохирургии.

Известен способ хирургической коррекции миопического астигматизма при помощи эксимерного излучения несканирующего эксимерного лазера с длиной волны λ=193 нм. Хирургическое воздействие на роговицу осуществляется за счет параметров амплитуды (А) плотности энергии в центре симметрии импульса, значения «сигмы», диаметра рабочей зоны абляции, количества импульсов. Под параметром «сигма» (σ) подразумевается параметр среднеквадратичного отклонения гауссова радиального распределения плотности энергии в поперечном сечении луча (см. Д.Худсон. Статистика для физиков. 2-е дополненное издание. Пер. с англ. М., Мир, 1970, стр.30-32). При коррекции миопического астигматизма формируют пространственный эллиптический (а не круглый, как при коррекции миопии) геометрический профиль поперечного сечения луча, при этом степень эллиптичности соответствует величине корректируемого астигматизма (см. Качалина Г.Ф. Хирургическая технология трансэпителиальной фоторефрактивной кератэктомии при миопии на эксимерлазерной установке «Профиль-500». Автореферат кандидатской диссертации. М., 2000 г., стр.10, а также А.Д.Семенов, А.В.Дога, Г.Ф.Качалина и др. Фотоастигматическая рефрактивная кератэктомия на установке «Профиль-500» в коррекции сложного миопического астигматизма. Офтальмохирургия, №4, 2000 г., стр.4). В этом случае все указанные параметры (кроме количества импульсов) задаются в виде определенных величин и остаются неизменными в ходе операции. Каждый из параметров воздействия излучения эксимерного лазера на роговицу дает свой вклад в получаемый результат: «сигма» определяет геометрию пространственного воздействия, амплитуда плотности энергии - интенсивность воздействия и частично геометрию, количество импульсов - конечную рефракцию. Основной рефракционный эффект определяется количеством импульсов по строме роговицы (см. Качалина Г.Ф. Хирургическая технология трансэпителиальной фоторефрактивной кератэктомии при миопии на эксимерлазерной установке «Профиль-500». Автореферат кандидатской диссертации. М., 2000 г., стр.9-14).

Однако данный способ обладает существенными недостатками: достаточной травматичностью воздействия на ткани глаза за счет большого количества энергии, поступающей при осуществлении лазерного воздействия. Кроме того, в ряде случаев имеет место возникновение послеоперационных осложнений в виде помутнений роговицы.

Техническая задача: уменьшение травматизации тканей глаза при одновременном уменьшении послеоперационных осложнений и объема удаляемых глазных тканей.

Техническая задача решается тем, что в способе хирургической коррекции миопического астигматизма, заключающемся в воздействии на роговицу путем послойной абляции импульсным излучением несканирующего эксимерного лазера с гауссовым радиальным пространственным распределением плотности энергии в поперечном сечении луча, воздействие производят посредством последовательного уменьшения параметра среднеквадратичного отклонения распределения плотности энергии в каждой из последующих серий импульсов в интервале от 2.7 мм до 1.8 мм, при этом значение амплитуды плотности энергии в центре симметрии импульса лежит в интервале от 100 мДж/кв.см до 175 мДж/кв.см и сохраняется постоянным во все время проведения серий импульсов, причем внутри каждой серии импульсов значение параметра среднеквадратичного отклонения распределения плотности энергии постоянно, при этом каждая серия импульсов формирует вогнутые по отношению к исходной поверхности роговицы эллипсоидальные поверхности, обращенные вогнутостью в сторону передней поверхности роговицы, а зона воздействия симметрична относительно оптического центра симметрии роговицы;

первоначально определяют положение слабой оси астигматизма и совмещают с ней большую ось формируемых эллипсоидальных поверхностей;

затем образуют первую вогнутую эллипсоидальную поверхность, при этом отношение длины большой оси вогнутой эллипсоидальной поверхности к диаметру роговицы лежит в интервале 0.6 до 0.8;

далее образуют вторую вогнутую эллипсоидальную поверхность, причем отношение длины большой оси второй эллипсоидальной поверхности к длине большой оси первой эллипсоидальной поверхности лежит в интервале от 0.8 до 0.95;

далее образуют третью вогнутую эллипсоидальную поверхность, при этом отношение длины большой оси третьей эллипсоидальной поверхности к длине большой оси второй эллипсоидальной поверхности лежит в интервале от 0.8 до 0.95, причем воздействие на поверхность роговицы производят излучением эксимерного лазера с длиной волны 193-250 нм, с диаметром зоны лазерного воздействия от 5 до 9 мм, длительностью импульсов 15-30 нс, частотой следования импульсов от 5 до 15 Гц.

Предложенная автором совокупность существенных отличительных признаков является необходимой и достаточной для однозначного достижения поставленной задачи.

Автором произведена большая работа, позволяющая определить интервалы основных параметров. Величина параметра среднеквадратичного отклонения распределения плотности энергии в каждой из последующих серий импульсов лежит в интервале от 2.7 мм до 1.8 мм и она не может быть меньше, чем 1.8 мм, т.к. при этом диаметр образуемой оптической зоны становится меньше диаметра центральной оптической зоны, и не может быть больше, чем 2.7 мм, т.к. больший диаметр оптической зоны нецелесообразен для достижения заявленной технической задачи.

Значение амплитуды плотности энергии в центре симметрии импульса сохраняется постоянным во все время проведения серий импульсов и лежит в интервале от 100 до 175 мДж/кв.см. Оно не может быть менее, чем 100 мДж/кв.см, поскольку это значение является эффективным порогом абляции, и более чем 175 мДж/кв.см, поскольку при этом возникают нелинейности процесса абляции, затрудняющие достижение заявленной технической задачи.

Способ поясняется чертежами.

Фиг.1 - последовательность уменьшения параметра среднеквадратичного отклонения распределения плотности энергии лазерного луча («сигма») вдоль слабой оси астигматизма. По оси абсцисс отложено расстояние от центра роговицы в миллиметрах. По оси ординат - величина плотности энергии лазерного луча в мДж/кв.см.

Фиг.2 - вид сверху на зону воздействия. По координатным осям отложено расстояние в миллиметрах от оптического центра роговицы. За слабую ось астигматизма принято положение оси абсцисс. В случае, если большая ось астигматизма находится под углом, оси всех эллиптических поверхностей также располагаются под этим же углом.

Фиг.3 - фронтальный разрез получаемой поверхности. По горизонтальной оси отложено расстояние в миллиметрах от оптического центра роговицы.

Способ осуществляется следующим образом.

Способ хирургической коррекции миопического астигматизма заключается в воздействии на роговицу путем послойной абляции импульсным излучением несканирующего эксимерного лазера с радиальным пространственным гауссовым распределением плотности энергии в поперечном сечении луча.

Воздействие производят посредством последовательного уменьшения параметра среднеквадратичного отклонения распределения плотности энергии в каждой из последующих серий импульсов в интервале 2.7 мм до 1.8 мм. Параметр «сигма» - величина среднеквадратичного отклонения распределения плотности энергии - в данном изобретении является (по сравнению с прототипом) величиной вариабельной, что значительно повышает эффективность предложенного способа.

На Фиг.1 позицией 1 обозначена первоначальная форма кривой распределения плотности энергии, позицией 2 - промежуточная форма, а позицией 3 - конечная форма кривой распределения плотности энергии. Во время воздействия форма кривой распределения плотности энергии становится более заостренной при сохранении постоянной амплитуды. Уменьшение величины «сигма» от первой серии импульсов к последующей производится ступенчато. При этом внутри каждой серии импульсов значение величины «сигма» постоянно.

При этом значение амплитуды плотности энергии в центре симметрии импульса лежит в интервале от 100 мДж/кв.см до 175 мДж/кв.см и сохраняется постоянным во все время проведения серий импульсов. Каждая серия импульсов формирует вогнутые эллипсоидальные поверхности, обращенные вогнутостью в сторону передней поверхности роговицы. Зона воздействия симметрична относительно оптического центра симметрии роговицы.

Образование поверхностей под воздействием лазерного излучения представлено на Фиг.2 и Фиг.3. На Фиг.3 позицией 4 обозначена исходная поверхность роговицы.

Оптическую ось излучения лазера совмещают с оптическим центром роговицы. Определяют положение слабой оси астигматизма и совмещают с ней большую ось формируемых эллипсоидальных поверхностей.

Сначала образуют первую вогнутую эллипсоидальную поверхность (Фиг.2, поз.1, Фиг.3, поз.1), при этом отношение длины большой оси вогнутой эллипсоидальной поверхности к диаметру роговицы лежит в интервале 0.6 до 0.8.

Далее образуют вторую вогнутую эллипсоидальную поверхность (Фиг.2, поз.2, Фиг.3, поз.2), причем отношение длины большой оси второй эллипсоидальной поверхности к длине большой оси первой эллипсоидальной поверхности лежит в интервале от 0.8 до 0.95.

Далее образуют третью вогнутую эллипсоидальную поверхность (Фиг.2, поз.3, Фиг.3, поз.3), при этом отношение длины большой оси третьей эллипсоидальной поверхности к длине большой оси второй эллипсоидальной поверхности лежит в интервале от 0.8 до 0.95.

При этом значение амплитуды плотности энергии в центре симметрии импульса лежит в интервале от 100 мДж/кв.см до 175 мДж/кв.см и сохраняется постоянным во все время проведения серий импульсов.

Воздействие на поверхность роговицы производят излучением эксимерного лазера с длиной волны 193-250 нм, с диаметром зоны лазерного воздействия от 5 до 9 мм, длительностью импульсов 15-30 нс, частотой следования импульсов от 5 до 15 Гц.

Все полученные указанными способами поверхности являются вогнутыми относительно исходной передней поверхности роговицы. Степень вогнутости однозначно определяет оптическую силу поверхности. Оптическая сила каждой из поверхностей, образованных в соответствии с формулой изобретения, является постоянной, но изменяющейся от поверхности к поверхности, причем центральный сегмент имеет минимальную оптическую силу по отношению к исходной поверхности роговицы. Значение этой величины заранее рассчитывают перед операцией, чтобы обеспечить пациенту нормальную, соразмерную рефракцию в центральной оптической зоне. Количество импульсов, необходимое для образования каждой из поверхностей, постоянно, но различно для каждой из них. Последовательное уменьшение параметра среднеквадратичного отклонения распределения плотности энергии в каждой из последующих серий импульсов при постоянном значении амплитуды плотности энергии в центре симметрии импульса во все время проведения серии импульсов позволяет в сочетании с остальными параметрами, указанными в отличительной части формулы изобретения, однозначно решить заявленную техническую задачу.

Предложенное изобретение характеризуется следующими клиническими примерами.

Пример 1. Пациентка В., 23 года.

Состояние до операции:

Острота зрения вдаль: Vis OD=0.07 Sph -5.0 D Cyl -1.75 D Ax 180 =0.9

Vis OS=0.07 Sph -5.0 D Cyl -1.75 D Ах 180=0.9

Толщина роговицы: 518 мкм.

Диагноз: стационарная миопия средней степени, сложный миопический астигматизм обоих глаз.

Проведена операция в соответствии с предложенным изобретением.

Первая серия импульсов Вторая серия импульсов Третья серия импульсов
«Сигма» (σ) по слабой оси, мм 2.53 2.40 2.20
«Сигма» (σ) по сильной оси, мм 2.08 1.97 1.81
Амплитуда плотности энергии (А), мДж/кв.см 175 175 175
Количество импульсов по строме роговицы 300 200 113

Состояние после операции (1 год):

Острота зрения вдаль: Vis OD=0.9 Vis OS=1.0

Толщина роговицы: 455 мкм, роговица прозрачная.

Пример 2. Пациентка П., 41 год.

Состояние до операции:

Острота зрения вдаль: Vis OD=0.03 Sph -7.5 D Cyl -1.0 D Ax 170 =0.9

Vis OS=0.04 Sph -7.0 D Cyl -1.0 D Ax 180=0.9

Толщина роговицы: 510 мкм.

Диагноз: стационарная миопия высокой степени, сложный миопический астигматизм обоих глаз.

Проведена операция в соответствии с предложенным изобретением.

Первая серия импульсов Вторая серия импульсов Третья серия импульсов
«Сигма» (σ) по слабой оси, мм 2.23 2.10 2.03
«Сигма» (σ) по сильной оси, мм 2.08 1.96 1.89
Амплитуда плотности энергии (А), мДж/кв.см 140 140 140
Количество импульсов по строме роговицы 620 410 165

Состояние после операции (4 месяца):

Острота зрения вдаль: Vis OD=0.9 Vis OS=0.9

Толщина роговицы: 445 мкм, роговица прозрачная.

Минимизация объема удаляемых тканей глаза достигается всей совокупностью технологических приемов осуществления лазерного воздействия на роговицу глаза путем одновременного сочетания всех приемов удаления при каждом воздействии и логически необходимого сочетания указанных приемов и их параметров для создания каждой из оптических поверхностей и сохранения в неприкосновенности максимального объема собственных тканей роговицы.

По сравнению с прототипом автору удалось уменьшить объем удаленной (аблированной) ткани роговицы не менее чем на 30%. Поскольку негативный отклик роговицы на проведенное лазерное воздействие прямо пропорционален объему аблированной ткани, применение предлагаемого изобретения позволяет снизить вероятность послеоперационных осложнений.

Последовательное изменение параметра среднеквадратичного отклонения гауссова радиального распределения плотности энергии луча («сигма») производится путем настройки лазерной установки «Профиль-500», не требующей изменения его конструкции.

Использование предлагаемого изобретения на установке «Профиль-500» позволило подтвердить однозначное положительное решение заявленной технической задачи: разработку способа хирургической коррекции миопии - уменьшение травматизации тканей глаза при одновременном уменьшении послеоперационных осложнений, уменьшение объема удаляемых тканей глаза.

Способ хирургической коррекции миопического астигматизма, заключающийся в воздействии на роговицу путем послойной абляции импульсным излучением несканирующего эксимерного лазера с гауссовым радиальным распределением плотности энергии в поперечном сечении луча, отличающийся тем, что воздействие производят посредством последовательного уменьшения параметра среднеквадратичного отклонения распределения плотности энергии в каждой из последующих серий импульсов в интервале от 2,7 до 1,8 мм, при этом значение амплитуды плотности энергии в центре симметрии импульса лежит в интервале от 100 до 175 мДж/кв.см и сохраняется постоянным во все время проведения серий импульсов; при этом внутри каждой серии импульсов значение параметра среднеквадратичного отклонения распределения плотности энергии постоянно; причем каждая серия импульсов формирует вогнутые по отношению к исходной поверхности роговицы эллипсоидальные поверхности, расположенные на одной оси, а зона воздействия симметрична относительно оптического центра симметрии роговицы; первоначально определяют положение слабой оси астигматизма и совмещают с ней большую ось формируемых эллипсоидальных поверхностей; затем образуют первую вогнутую эллипсоидальную поверхность, при этом отношение длины большой оси вогнутой эллипсоидальной поверхности к диаметру роговицы лежит в интервале от 0,6 до 0,8; далее образуют вторую вогнутую эллипсоидальную поверхность, причем отношение длины большой оси второй эллипсоидальной поверхности к длине большой оси первой эллипсоидальной поверхности лежит в интервале от 0,8 до 0,95; далее образуют третью вогнутую эллипсоидальную поверхность, при этом отношение длины большой оси третьей эллипсоидальной поверхности к длине большой оси второй эллипсоидальной поверхности лежит в интервале от 0,8 до 0,95, причем воздействие на поверхность роговицы производят излучением эксимерного лазера с длиной волны 193-250 нм, с диаметром зоны лазерного воздействия от 5 до 9 мм, длительностью импульсов 15-30 нс, частотой следования импульсов от 5 до 15 Гц.



 

Похожие патенты:

Изобретение относится к области машиностроения и приборостроения и может быть использовано в производстве различных видов технологического оборудования, приборов и металлической упаковки.
Изобретение относится к технологии получения наноматериалов, в частности наночастиц теллурида кадмия, и может быть использовано для создания оптических приборов, детекторов ионизирующих излучений, катализаторов.

Изобретение относится к кузнечно-прессовому оборудованию, в частности к машинам для холодной объемной обработки методом локального деформирования с предварительной пластификацией металла заготовок.
Изобретение относится к получению частиц платино-титановых сплавов нанометрового размера. .
Изобретение относится к биотехнологии. .
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из доломитовых безобжиговых жаростойких бетонов, получаемых без предварительного обжига.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из хромомагнезитовых безобжиговых жаростойких бетонов.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из магнезитовых бесцементных жаростойких бетонов, получаемых без предварительного обжига.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из шамотных жаростойких бетонов, получаемых без предварительного обжига.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из цирконовых безобжиговых жаростойких бетонов, получаемых без предварительного обжига.

Изобретение относится к офтальмологии и может быть использовано при коррекции миопии. .

Изобретение относится к области медицины, а именно к офтальмохирургии. .

Изобретение относится к области медицины, а именно к офтальмохирургии. .

Изобретение относится к медицине, а именно к офтальмологии. .

Изобретение относится к области офтальмохирургии. .

Изобретение относится к медицине, а именно к офтальмохирургии. .

Изобретение относится к медицине, а именно к офтальмологии. .
Изобретение относится к офтальмологии и может быть использовано для формирования роговичного тоннеля для имплантации роговичных сегментов при лечении кератоконуса.
Изобретение относится к офтальмологии и может быть использовано для хирургического лечения кератоконуса. .
Изобретение относится к области медицины, а именно к области офтальмологии. .
Изобретение относится к офтальмохирургии и может быть использовано при лечении аметропии высокой степени и, в частности, миопии высокой степени с выраженным астигматизмом с использованием кераторефракционной хирургии - ЛАСИК
Наверх