Состав для получения неавтоклавного газобетона и способ его приготовления

Изобретения относятся к производству строительных материалов и изделий из ячеистого бетона. Состав для получения неавтоклавного газобетона включает, мас.%: портландцемент 30,7-40,9, зола ТЭС 21,5-32,3, оксид кальция 1,62-2,16, алюминиевая пудра 0,098-0,110, отработанный текстильный корд 0,64-0,97, хлориды щелочных и щелочноземельных металлов, выбранные из NaCl, CaCl2, KCl, LiCl 0,15-0,41, продукт конденсации нафталинсульфокислоты и формальдегида 0,23-0,41, вода - остальное. Способ получения неавтоклавного газобетона включает приготовление пластично-вязкой указанной выше сырьевой смеси с предварительным совместным помолом сухих компонентов указанной смеси, за исключением портландцемента, в течение 30-40 мин, вспучивание сырьевой смеси, ее твердение при пропаривании или в нормальных условиях, причем после указанного совместного помола сухих компонентов в состав сырьевой смеси вводят портландцемент. Технический результат - улучшение эксплуатационных характеристик газобетона с одновременным упрощением его получения. 2 н.п. ф-лы, 1 табл.

 

Изобретение относится к производству строительных материалов и изделий из ячеистого бетона, поризованного газом, и может быть использовано на заводах ячеистобетонных изделий и в монолитном строительстве.

Известен состав сырьевой смеси для получения газобетона (RU №2255073, кл. С04В 38/02, 27.06.2005), содержащий компоненты в мас.%:

Цемент 15-50
Песок 31-42
Алюминиевая пудра 0,10-1,0
Каустическая сода 0,05-0,45
Вода остальное

Недостатком известного состава является повышенный расход наиболее дорогого компонента сырьевой смеси - алюминиевой пудры, что ведет к увеличению себестоимости газобетона. Кроме того, использование в известном составе песка естественной дисперсности может вызывать явления седиментации при приготовлении и укладке газобетонной смеси, что приводит к вариотропности структуры газобетона, увеличению толщины межпоровой перегородки, что негативно влияет на прочностные характеристики и увеличению его средней плотности.

Наиболее близким составом сырьевой смеси для получения газобетона является состав (RU №2304127, кл. С04В 38/02; В28В 1/50, 10.08.2007), содержащий следующие компоненты, мас.%:

Портландцемент 40,1-45,8
Известь 8,1-9,2
Молотый песок 41,3-48,0
Текстильный корд 3,5-8,5
Алюминиевая пудра 0,210-0,214

Недостатками прототипа являются замедленная кинетика набора прочности материала, а также увеличенные энергозатраты на помол кварцевого песка, что затрудняет его использование в монолитном строительстве.

Известен способ получения неавтоклавного зольного газобетона (RU №2134250, кл. С04В 40/00, 10.08.1999), который заключается в приготовлении пластично-вязкой сырьевой смеси, насыщении ее газовой средой, в процессе вспучивания или вспенивания, твердении при пропаривании, причем зольный наполнитель, входящий в состав сырьевой смеси, предварительно активируют путем его перемешивания с водой затворения в бетоносмесителе с частотой вращения рабочего органа 500-700 об/мин в течение 1-5 мин. Оптимальное время активации определяют по максимальной высоте осадка в отстое активированной зольной суспензии или оптимальному водородному показателю рН той же суспензии.

Однако известный способ получения неавтоклавного зольного газобетона трудоемок, характеризуется большими затратами времени, требует специального смесительного оборудования и не всегда может быть реализован в условиях строительной площадки.

Прототипом предлагаемого способа является способ получения зольного газобетона, включающий приготовление пластично-вязкой сырьевой смеси с предварительным активированием отвальной золы ТЭЦ, вспучивание сырьевой смеси, твердение ее при пропаривании или в нормальных условиях, причем активирование отвальной золы ТЭЦ производят в процессе совместного помола всех сухих компонентов сырьевой смеси в течение 20-40 мин (RU №2168485, кл. C04B 38/02, С04В 40/00, 10.06.2001).

Недостатком этого способа является наличие в нем операции помола тонкодисперсного компонента сырьевой смеси - цемента - совместно с другими составляющими, что увеличивает время технологического процесса и уменьшает производительность помольных установок.

Задачей изобретения является разработка состава неавтоклавного газобетона и способа его изготовления с возможностью использования газобетона в монолитном строительстве.

Техническим результатом изобретения являются улучшенные эксплуатационные характеристики неавтоклавного газобетона с одновременным упрощением его получения.

Поставленная задача и указанный технический результат решается тем, что состав для получения неавтоклавного газобетона, включающий портландцемент, кремнеземистый компонент, оксид кальция, алюминиевую пудру, отработанный текстильный корд, согласно изобретению дополнительно содержит хлориды щелочных и щелочноземельных металлов, выбранные из групп NaCl, CaCl2, KCl, LiCl, и продукт конденсации нафталинсульфокислоты и формальдегида, а в качестве кремнеземистого компонента используют золу ТЭС при следующем соотношении компонентов, мас.%:

Портландцемент 30,7-40,9
Зола ТЭС 21,5-32,3
Оксид кальция 1,62-2,16
Алюминиевая пудра 0,098-0,110
Отработанный
текстильный корд 0,64-0,97
Хлориды щелочных
и щелочноземельных
металлов, выбранные
из групп NaCl, CaCl2,
KCl, LiCl 0,15-0,41
Продукт конденсации
нафталинсульфокислоты
и формальдегида 0,23-0,41
Вода остальное

Поставленная задача достигается также тем, что в способе приготовления неавтоклавного газобетона, включающем приготовление пластично-вязкой сырьевой смеси с предварительным помолом сухих компонентов смеси в течение 30-40 мин, вспучивание сырьевой смеси, твердение при пропаривании или в нормальных условиях, согласно изобретению после совместного помола сухих компонентов вводят в состав сырьевой смеси портландцемент.

При содержании в составе неавтоклавного газобетона портландцемента менее 30,7% прочность газобетона ниже допустимого стандартами уровня, а при содержании портландцемента более 40,9% в газобетоне появляются усадочные деформации, приводящие к снижению прочности и морозостойкости.

При содержании оксида кальция менее 1,62% не обеспечивается достаточной щелочности жидкой фазы и эффективного газообразования смеси, а при содержании оксида кальция более 2,16% возможно снижение прочности газобетона.

При содержании золы ТЭС менее 21,5% появляются усадочные деформации, приводящие к снижению прочности и морозостойкости. При содержании золы ТЭС более 32,3% прочность газобетона ниже допустимого стандартами уровня.

При содержании алюминиевой пудры менее 0,098% газобетон не достигает заданной пористости, что приводит к повышенной плотности. При содержании алюминиевой пудры более 0,110% образуется избыточное количество водорода, что приводит к слиянию газовых пузырьков и вырыванию их через поверхность наружу. В результате чего происходит осадка газобетонной смеси.

Введение отработанного текстильного корда в количестве 0,64-0,97% оптимизирует макроструктуру, уменьшает усадочные деформации и увеличивает трещиностойкости газобетона. При содержании корда менее 0,64% не обеспечивается достаточного улучшения физико-механических свойств газобетона. При содержании корда более 0,97% затрудняется равномерное его распределение в смеси, структура газобетона характеризуется наличием крупных пор и пустот.

Хлориды щелочных и щелочноземельных металлов, выбранные из групп NaCl, CaCl2, KCl, LiCl, увеличивают щелочность жидкой фазы и тем самым улучшают газообразование и вспучивание сырьевой смеси, а также способствуют ускорению твердения газобетона, что позволяет получать изделия без тепловой обработки. При содержании хлоридов менее 0,15% не обеспечивается эффективного ускорения твердения газобетона. При содержании хлоридов более 0,41% прочность газобетона изменяется незначительно.

Продукт конденсации нафталинсульфокислоты и формальдегида снижает водотвердое отношение газобетонной смеси на 13-15% и повышает прочность газобетона. Содержание продукта конденсации нафталинсульфокислоты и формальдегида менее 0,23% не дает достаточного водоредуцирующего эффекта, а при содержании добавки более 0,41% замедляется дальнейшее водоредуцирование и повышение прочности газобетона.

В данном способе приготовления неавтоклавного газобетона производят совместный помол сухих компонентов сырьевой смеси за исключением портландцемента, который вводят в состав смеси после помола. Портландцемент - это тонкодисперсный материал и его дополнительный помол неэффективен. При этом достигается уменьшение времени технологического процесса, энергозатрат на помол и увеличение производительности помольных установок. При совместном сухом помоле компонентов смеси происходит механическая активация частиц алюминия, снятие с их поверхности парафиновой пленки, диспергирование зольного компонента, что приводит к возрастанию числа активных центров на поверхности зольных частиц и улучшению физико-механических характеристик газобетона. Также происходит равномерное распределение компонентов во всем объеме смеси, что приводит к повышению качества газобетона. При совместном помоле компонентов газобетонной смеси в одном агрегате упрощается технология производства газобетона за счет уменьшения оборудования.

Состав для получения неавтоклавного газобетона и способ его приготовления иллюстрируются примером.

Пример.

Для получения неавтоклавного газобетона использовали портландцемент, оксид кальция, золу ТЭС, алюминиевую пудру, отработанный текстильный корд, хлориды щелочных и щелочноземельных металлов, выбранные из групп NaCl, CaCl2, KCl, LiCl, продукт конденсации нафталинсульфокислоты и формальдегида. В таблице приведены конкретные составы для получения неавтоклавного газобетона.

В соответствии с предлагаемым способом все сухие компоненты смеси за исключением портландцемента совместно размалывали в шаровой лабораторной мельнице. Далее полученную сухую смесь перемешивали с портландцементом. Окончательный состав сухой смеси помещали в воду затворения и перемешивали в течение 2 мин. Приготовленную газобетонную смесь заливали в формы 10×10×10 см. После 3 часовой выдержки срезали «горбушку». Распалубка форм осуществлялась через 48 часов, после чего образцы помещались в камеру нормального твердения. В дальнейшем образцы высушивались до постоянной массы и подвергались физико-механическим испытаниям. Результаты испытаний образцов приведены в таблице.

Остальные примеры приготовления состава для получения неавтоклавного газобетона осуществлялись аналогично примеру, данные которых представлены в таблице.

№ п/п Компоненты состава, мас. % Плотность, кг/м3 Предел прочности при сжатии, МПа
3 сут 28 сут
1 Портландцемент - 30,7
Зола ТЭС - 32,3
Оксид кальция - 1,62
Алюминиевая пудра - 0,098
Отработанный текстильный корд - 0,64
Хлориды щелочных и щелочноземельных металлов, выбранные из групп NaCl, CaCl2, KCl, LiCl - 0,15
445 0,51 1,1
Продукт конденсации нафталинсульфокислоты и формальдегида - 0,23
Вода - 34,262
2 Портландцемент - 35,1
Зола ТЭС - 27,7
Оксид кальция - 1,85
Алюминиевая пудра - 0,104
Отработанный текстильный корд - 0,64
Хлориды щелочных и щелочноземельных металлов, выбранные из групп NaCl, CaCl2, KCl, LiCl - 0,17
460 0,73 1,3
Продукт конденсации нафталинсульфокислоты и формальдегида - 0,26
Вода - 34,176
3 Портландцемент - 40,9
Зола ТЭС - 21,5
Оксид кальция - 2,16
Алюминиевая пудра - 0,110
Отработанный текстильный корд - 0,97
Хлориды щелочных и щелочноземельных металлов, выбранные из групп NaCl, CaCl2, KCl, LiCl - 0,41
485 0,87 1,6
Продукт конденсации нафталинсульфокислоты и формальдегида - 0,41
Вода - 33,540

Данные таблицы показывают, что предлагаемый состав и способ его приготовления позволяют получать неавтоклавный газобетон с прочностью на 34% выше и плотностью на 12% ниже, чем у прототипа. Исключение операции помола тонкодисперсного компонента - цемента - совместно с другими составляющими сырьевой смеси увеличивает производительность помольных установок и уменьшает время технологического процесса.

Заявленный состав и способ не ограничиваются приведенными примерами их осуществления. В рамках изобретения возможны и другие примеры состава и способа его осуществления, не выходящие за пределы формулы и описания.

В настоящее время изобретение находится на стадии опытно-лабораторных испытаний.

1. Состав для получения неавтоклавного газобетона, включающий портландцемент, кремнеземистый компонент, оксид кальция, алюминиевую пудру, отработанный текстильный корд, отличающийся тем, что он дополнительно содержит хлориды щелочных и щелочноземельных металлов, выбранные из групп NaCl, CaCl2, KCl, LiCl, и продукт конденсации нафталинсульфокислоты и формальдегида, а в качестве кремнеземистого компонента используют золу ТЭС при следующем соотношении компонентов, мас.%:

портландцемент 30,7-40,9
зола ТЭС 21,5-32,3
оксид кальция 1,62-2,16
алюминиевая пудра 0,098-0,110
отработанный текстильный корд 0,64-0,97
хлориды щелочных и щелочноземельных
металлов, выбранные из групп NaCl,
CaCl2, KCl, LiCl 0,15-0,41
продукт конденсации
нафталинсульфокислоты
и формальдегида 0,23-0,41
вода остальное

2. Способ получения неавтоклавного газобетона, включающий приготовление пластично-вязкой сырьевой смеси по п.1 с предварительным совместным помолом сухих компонентов смеси за исключением портландцемента в течение 30-40 мин, вспучивание сырьевой смеси, ее твердение при пропаривании или в нормальных условиях, причем после указанного совместного помола сухих компонентов в состав сырьевой смеси вводят портландцемент.



 

Похожие патенты:
Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных ячеистых бетонов автоклавного твердения для гражданского и промышленного строительства.
Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов. .

Изобретение относится к производству строительных материалов. .

Изобретение относится к производству строительных материалов и может быть использовано в технологии производства ячеистого бетона автоклавного и неавтоклавного твердения.

Изобретение относится к строительным материалам и может быть использовано для производства легких строительных стеновых камней и монолитного строительства. .
Изобретение относится к промышленности строительных материалов, а именно к производству легких огнеупорных фибробетонов. .
Изобретение относится к промышленности строительных материалов и относится к получению пенокерамических материалов. .
Изобретение относится к промышленности строительных материалов и, главным образом, к получению жаростойких керамических материалов, предназначенных для применения в промышленном строительстве для теплоизоляции технологического оборудования, эксплуатируемого при высоких значениях температуры (в том числе в вакууме), а также в условиях прямого контакта с открытым пламенем газовых горелок, печей и др.
Изобретение относится к составам сырьевых смесей, используемых для изготовления кирпича, блоков и других строительных изделий. .
Изобретение относится к области изготовления строительных материалов и может быть использовано для производства разновидности ячеистого бетона - газобетона. .

Изобретение относится к области производства строительных изделий. .

Изобретение относится к области производства искусственных крупных заполнителей для бетона. .
Изобретение относится к строительным материалам и может быть использовано заводами, выпускающими изделия из армированного и не армированного газобетона. .
Изобретение относится к производству строительных материалов и изделий из ячеистого бетона, поризованного газом, и может быть использовано на заводах ячеистобетонных изделий и в монолитном строительстве для заполнения каналов и полостей в кладке каменных стен, а также для изготовления теплоизоляционных плит.

Изобретение относится к производству строительных изделий из ячеистого бетона. .

Изобретение относится к промышленности строительных материалов, а именно к способам изготовления теплоизоляционных и конструкционно-теплоизоляционных изделий, а также к технологиям производства пенобетона для устройства теплозвукоизоляционных плит и строительных конструкций.

Изобретение относится к производству многослойных строительных изделий, в том числе теплоизоляционных и конструкционно-теплоизоляционных, с улучшенными теплотехническими, физико-механическими и эксплуатационными свойствами.

Изобретение относится к области производства изделий из ячеистого бетона. .
Изобретение относится к составам для приготовления аэрированных бетонных материалов ячеистой структуры, используемых для изготовления строительных конструкций. .

Изобретение относится к области строительства, а именно к способам изготовления композиционных строительных изделий
Наверх