Низкоуглеродистая холоднокатаная листовая сталь для глубокой штамповки изделий бытового назначения

Изобретение относится к области черной металлургии, а именно к производству холоднокатаной листовой стали для глубокой штамповки изделий бытового назначения. Сталь содержит углерод, марганец, кремний, серу, фосфор, хром, никель, медь, азот, алюминий, титан, ниобий и железо при следующем соотношении компонентов, мас.%: углерод 0,008÷0,01, марганец 0,15÷0,25, кремний≤0,03, сера≤0,013, фосфор≤0,015, хром≤0,04, никель≤0,06, медь≤0,06, азот≤0,008, алюминий 0,02÷0,07, титан (2.4S+3.43N)÷(2,4S+3,43N)+0,03, ниобий 7.75С÷7.75С+0.02, железо - остальное, где (S), (N) и (С) - содержание в стали серы, азота и углерода. Сталь имеет временное сопротивление σв=270÷370 Н/мм, предел текучести σт≤240 Н/мм2, относительное удлинение δ4≥34% и коэффициент пластической анизотропии r90≥1,1. Улучшаются потребительские свойства стали.

 

Изобретение относится к черной металлургии и может быть использовано при производстве стали для глубокой штамповки изделий бытового назначения.

Такая сталь содержит относительно малое количество углерода и другие элементы, в том числе - титан и ниобий. Эта сталь должна иметь требуемые прочностные свойства и способность к глубокой вытяжке при штамповке без образования дефектов типа линий текучести (линий Людерса). Указанная низкоуглеродистая сталь обычно соответствует требованиям ГОСТ 1050, но в последнее время для изготовления бытового назначения (корпусов холодильников, газовых плит, СВЧ-печей и т.д.) используется супернизкоуглеродистая сталь с содержанием углерода менее 0,01%, что обуславливает получение высоких пластических характеристик, например, заданной величины коэффициента пластической анизотропии (r90) - см. обзорную информацию «Анализ современных методов оценки штампуемости низкоуглеродистой листовой стали», бюллетень ЦНИИТИ, серия «Прокатное производство», вып.3, М., 1989, с.11 и 13).

Известна сталь повышенной износостойкости при ударноабразивном изнашивании, содержащая углерод, кремний, марганец, хром, титан, ванадий, азот и железо, причем содержание углерода в ней составляет 0,8…1,0 мас.%. (см. а.с. СССР №969779, Кл. С22С 38/38, опубл. в БИ №40, 1982 г.). Такая сталь непригодна для глубокой штамповки.

Наиболее близким аналогом к заявляемой стали является тонколистовая холоднокатаная низкоуглеродистая сталь (DE 69612253 Т2, C21D 8/04, 18.10.2001).

Эта сталь с заданными механическими (промышленными) свойствами содержит углерод, марганец, кремний, серу, фосфор, хром, алюминий, никель, медь, азот, титан и ниобий.

Однако эта сталь недостаточно пригодна для глубокой штамповки.

Технической задачей настоящего изобретения является улучшение потребительских свойств низкоуглеродистой холоднокатаной листовой стали, используемой для изготовления изделий бытового назначения путем глубокой штамповки.

Для решения этой задачи предлагаемая низкоуглеродистая холоднокатаная листовая сталь для глубокой штамповки изделий бытового назначения, содержащая углерод, марганец, кремний, серу, фосфор, хром, никель, медь, азот, алюминий, титан, ниобий и железо, содержит указанные компоненты при следующем соотношении, мас.%:

углерод 0,008÷0,01
марганец 0,15÷0,25
кремний ≤0,03
сера ≤0,013
фосфор ≤0,015
хром ≤0,04
никель ≤0,06
медь ≤0,06,
азот ≤0,008
алюминий 0,02÷0,07
Ti=(2,4S+3,43N)÷(2,4S+3,43N)+0,03
[Nb]=7,75C÷7,75C+0,02
железо остальное,

где (S), (N), (С) - содержание в стали серы, азота и углерода, и имеет временное сопротивление σв=270…370Н/мм2, предел текучести σт≤240H/мм2, относительное удлинение δ4≥34% и коэффициент пластической анизотропии r90≥1,1.

Сущность заявляемого технического решения заключается в оптимизации химсостава низкоуглеродистой холоднокатаной тонколистовой стали, а также ее механических свойств (σв и σт) и показателей пластических характеристик (δ4, r90) этой стали, обеспечивающих выход качественных изделий при глубокой штамповке. Наличие в стали титана и ниобия (их содержание определяется количеством соответственно серы, азота и углерода) не только повышает ее прочность, но и улучшает штампуемость.

Опытную проверку предлагаемой холоднокатаной стали осуществляли в ОАО «Магнитогорский металлургический комбинат».

С этой целью при выплавке стали варьировали содержание отдельных ее компонентов, а при горячей и холодной прокатке основные режимы прокатки оставляли неизменными, фиксируя на готовом листовом прокате его механические и пластические характеристики. Результаты опытов оценивали по выходу качественной листовой стали (категорий вытяжек ВГ и Г по ГОСТ 9045) толщиной 0,5…2,5 мм. Например, каждое увеличение содержания С на 0,01% повышало значение предела прочности отожженных холоднокатаных листов на ~6,0 Н/мм2 с одновременным увеличением предела текучести и уменьшением удлинения. При повышении содержания Si, Р, S и Сr в стали возрастали величины σв и σт с одновременным снижением величины δ4, что уменьшало и величину r90, в результате чего выход листов категории ВГ не превысил 98,0%. Ni обеспечивает показатель анизотропии, повышение его содержания и содержания Сu более 0,06% приводило к увеличению количества дисперсного перлита, что ухудшало пластические свойства стали. Увеличение содержания Мn, которое вводится для связывания серы, на 0,1% повышало прочность на ~5,0 Н/мм2 с ухудшением пластических свойств, при соотношении Mn/S≤10 ухудшались условия горячей прокатки из-за образования на боковых кромках трещин. Уменьшение же в стали содержания ее компонентов ухудшало как прочностные свойства, так и пластичность металла (появление линий Людерса) с увеличением его отбраковки.

Наилучшие результаты (выход листов категории ВГ - 99,9%, остальное - Г) получены с использованием настоящего изобретения. Отклонения от рекомендуемых параметров заявляемой стали ухудшали достигнутые показатели. Например, при повышении содержания упомянутых компонентов в стали возрастали величины σв и σт с одновременным снижением величины δ4, что уменьшало и величину r90, в результате чего выход листов категории ВГ не превысил 98,0%. Таким образом, опытная проверка подтвердила приемлемость найденного технического решения для достижения поставленной цели и его преимущество перед известным объектом.

Технико-экономические исследования показали, что использование настоящего изобретения в ОАО «ММК» позволит повысить выход качественной низкоуглеродистой холоднокатаной стали для глубокой штамповки изделий бытового назначения не менее чем на 3% при соответствующем росте прибыли от реализации листового металла с улучшенными характеристиками.

Пример конкретного выполнения

Низкоуглеродистая холоднокатаная листовая сталь толщиной 1,5 мм, содержащая компоненты в следующем соотношении: С=0,008 мас.%, Mn=0,2%, Si=0,02%, S=0,01%, P=0,012%, Cr=0,03%, Ni=0,045%, Cu=0,05%, N=0,005%, Аl=0,05%, остальное - титан, ниобий и железо, причем содержание [Ti]=2,4S+3,43N+0,015=2,4·0,01+3,43·0,005+0,015≈0,06 мас.% и [Nb]=7,75C+0,01=7,75·0,008+0,01≈0,07 мас.%, выплавлялась конверторным способом, прокатывалась на широкополосном стане горячей прокатки при Тк.п=820-850°С, Тсм=660-680°С. Холодная прокатка производилась на 4-клетевом стане 2500 с подката 3,2 мм (обжатие - 53%), отжигалась в колпаковых печах с азотоводородной защитной атмосферой, дрессировалась с обжатием 0,9±0,1%.

Механические свойства х/к металлопроката: σВ=320 Н/мм2, σТ=210 Н/мм2, δ4=37%, r90=1,5.

Низкоуглеродистая холоднокатаная листовая сталь для глубокой штамповки изделий бытового назначения, содержащая углерод, марганец, кремний, серу, фосфор, хром, никель, медь, азот, алюминий, титан, ниобий и железо, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:

углерод 0,008÷0,01
марганец 0,15÷0,25
кремний ≤0,03
сера ≤0,013
фосфор ≤0,015
хром ≤0,04
никель ≤0,06
медь ≤0,06
азот ≤0,008
алюминий 0,02÷0,07
титан (2,4S+3,43N)÷(2,4S+3,43N)+0,03
ниобий 7,75C÷7,75C+0,02
железо остальное,

где S, N и С - содержание в стали серы, азота и углерода, и имеет временное сопротивление σв=270÷370 Н/мм2, предел текучести σт≤240 Н/мм2, относительное удлинение δ4≥34% и коэффициент пластической анизотропии r90≥1,1.



 

Похожие патенты:
Изобретение относится к черной металлургии, а именно к холоднокатаной стали для глубокой штамповки изделий бытовой техники. .

Изобретение относится к области металлургии, а именно к составу мартенситной нержавеющей стали, используемой для изготовления элементов форм или каркасов форм для литья пластмасс под давлением.

Изобретение относится к металлургии, а именно к производству заготовок из аустенитных, стабилизированных титаном сталей. .
Изобретение относится к области металлургии, а именно к составу стали повышенного качества, предназначенной для производства цельнокатаных колес колесных пар тележек пассажирских вагонов магистральных железных дорог.

Изобретение относится к области металлургии, а именно к высокопрочной износостойкой стали и способу ее получения. .

Изобретение относится к области металлургии, а именно к составу стали повышенной твердости, предназначенной для производства цельнокатаных колес колесных пар грузовых вагонов и путевых машин магистральных железных дорог.
Изобретение относится к черной металлургии, а именно составам коррозионно-стойких высокоуглеродистых сталей мартенситного класса, а также к изделиям, выполненным из них.
Сталь // 2361960
Изобретение относится к области металлургии, а именно к составам сталей, используемым в производстве оборудования пищевой, химической, нефтяной и газовой промышленности.

Изобретение относится к металлургии, в частности к разработке составов легированных аустенитных коррозионно-стойких сталей для атомных энергетических установок с жидкометаллическим теплоносителем.
Сталь // 2356994
Изобретение относится к области металлургии, а именно к составам хромоникелевых сталей, которые могут быть использованы в криогенной технике. .
Изобретение относится к черной металлургии, а именно к холоднокатаной стали для глубокой штамповки изделий бытовой техники. .

Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаного проката, предназначенного для эмалирования. .
Изобретение относится к обработке металлов давлением, в частности к технологии производства холоднокатаной тонкой полосы для глубокой штамповки. .

Изобретение относится к изготовлению горячекатаной многофазной стали для автомобильной промышленности. .
Изобретение относится к производству проката, в частности к технологии термообработки рулонных полос из высокопрочной низкоуглеродистой стали. .
Изобретение относится к прокатному производству, в частности к производству тонколистовой холоднокатаной рулонной стали толщиной до 0,5 мм. .

Изобретение относится к области металлургии, в частности к производству черной жести из малоуглеродистой стали. .

Изобретение относится к обработке металлов давлением, в частности к технологии горячей прокатки листовой стали. .
Изобретение относится к области обработки металлов давлением, а именно к производству холоднокатаной IF-стали, содержащей 0,006 мас.% углерода, а также титан и ниобий. .
Изобретение относится к прокатному производству и может быть использовано при производстве холоднокатаной ленты преимущественно толщиной 0,8-0,9 мм, обладающей повышенными прочностными ( в не менее 780 Н/мм2) и пластическими ( 100 в диапазоне 1-5%) свойствами, из низкоуглеродистых марок стали, применяемой в качестве упаковочной.

Изобретение относится к области металлургии, а именно к производству мягких черных жестей с твердостью HR30T 49±3 или HR30T 53±3, предназначенных для лужения
Наверх