Способ определения глубины локальной (местной) коррозии и слежения за ее развитием

Использование: для определения глубины локальной (местной) коррозии и слежения за ее развитием. Сущность: на контролируемом изделии размещают один или несколько преобразователей акустической эмиссии, регистрируют осциллограмму сигнала, по осциллограмме сигнала определяют долю nS0 симметричной S0 волны Лэмба в сигнале и/или долю nA0 антисимметричной А0 волны Лэмба в сигнале и по полученной доле, или по полученным долям, или по соотношению долей судят о глубине и развитии коррозии. Технический результат: повышение информативности процесса выявления коррозионных дефектов с помощью акустической эмиссии даже по одному сигналу, полученному, по крайней мере, одним преобразователем акустической эмиссии. 6 з.п. ф-лы, 3 ил.

 

Изобретение относится к методам неразрушающего контроля тонкостенных и листовых изделий (и других изделий, в которых могут распространяться волны Лэмба) и позволяет выявлять глубину проникновения и развитие локальной коррозии. К локальной (называемой также местной) коррозии относятся виды коррозионного разрушения, охватывающие отдельные участки поверхности изделия, такие как питтинговое, язвенное, межкристаллитное, коррозионное растрескивание и другие.

Известен способ контроля развивающихся дефектов в изделиях из листовых материалов [авторское свидетельство СССР 794489 от 07.01.1981], в котором предварительно экспериментально определяют две частоты, на которых сигнал акустической эмиссии (АЭ) имеет максимумы в спектре. Постулируют, что эти максимумы соответствуют двум волнам Лэмба. По результатам сравнения спектральной плотности сигнала на этих двух частотах судят об источнике AЭ, в частности, находится он на поверхности стенки либо в ее глубине.

Недостатком этого способа является отсутствие методики определения каких бы то ни было параметров дефекта по спектру сигнала и необходимость предварительного экспериментального определения двух характерных частот.

Технический результат, на достижение которого направлено изобретение, заключается в повышении информативности процесса выявления коррозионных дефектов АЭ контроля за счет получения возможности определения глубины проникновения локальной коррозии и слежения за ее развитием даже по одному сигналу, полученному, по крайней мере, одним преобразователем АЭ.

Указанный результат достигается тем, что в способе определения глубины локальной (местной) коррозии и слежения за ее развитием методом акустической эмиссии на тонкостенном объекте на контролируемом изделии размещают один или несколько преобразователей акустической эмиссии, регистрируют осциллограмму сигнала, по ней определяют долю nS0 симметричной A0 волны Лэмба в сигнале и/или долю nA0 антисимметричной S0 волны Лэмба в сигнале и по полученной доле, или по полученным долям, или по соотношению долей судят о глубине и развитии коррозии.

Доли S0 и A0 волн определяют следующим образом: по значению толщины Н стенки объекта контроля и на основе физических параметров материала объекта вычисляют частоту ƒ0, на которой групповые скорости нулевой симметричной S0 и нулевой антисимметричной A0 волн Лэмба равны между собой, выбирают полученный экспериментально для соответствующих параметров объекта коэффициент k=0.5÷1.5 для сигнала акустической эмиссии в качестве доли нулевой симметричной S0 волны используют отношение энергии ES0 лежащей в частотном диапазоне выше частоты k·ƒ0, к полной энергии сигнала EΣ:nS0=ES0/EΣ, в качестве доли нулевой антисимметричной A0 волны используют отношение энергии EA0, лежащей в частотном диапазоне ниже частоты k·ƒ0, к полной энергии сигнала EΣ:nS0=ES0/EΣ.

Частоту ƒ0 определяют по формуле ƒ0(0.6÷0.7)VT/H или ƒ0=2000 кГц·мм/H, где VT-скорость объемной поперечной волны в материале контролируемого объекта.

Глубину h проникновения коррозии определяют по формуле

или или

О развитии коррозии судят по изменению во времени глубины проникновения коррозии и/или по количеству приходящих в единицу времени сигналов акустической эмиссии с глубиной проникновения коррозии больше заданной.

При помощи анализа времени прихода сигналов на различные преобразователи акустической эмиссии выделяют сигналы, приходящие из заданной области.

От осциллограммы сигнала отрезается ее начальная и/или конечная части для уменьшения влияния шумов и переотражений.

Сущность способа поясняется графическими изображениями. На фиг. 1 показаны графики зависимости групповой скорости различных волн Лэмба от частоты для образца из стали толщиной 5 мм, на которых выделены области, соответствующие максимумам спектральной плотности сигнала; на фиг. 2 продемонстрирован процесс определения энергии в высокочастотном и низкочастотном диапазонах спектра АЭ сигнала; на фиг. 3 показан процесс изменения спектра и увеличения соотношения энергии высокочастотной составляющей сигнала и полной энергии сигнала при развитии коррозии в глубину изделия.

Способ определения глубины локальной коррозии и слежения за ее развитием осуществляется следующим образом.

Теоретические исследования и анализ литературных источников показали, что в тонкостенных объектах (пластины, трубы, сосуды, емкости и т.п.) акустический сигнал распространяется не в виде объемных продольных и поперечных волн, а в виде комбинации волн Лэмба, отличающихся сильной зависимостью групповой скорости распространения и спектральной плотности от частоты (фиг. 1).

Основной энергетический вклад в сигнал АЭ дают нулевая симметричная (S0) и нулевая антисимметричная (A0) волны Лэмба.

При расположении источника АЭ на поверхности стенки объекта (при этом неважно, внутренней или внешней) или вблизи нее (например, на глубине 0-20% и 80-100%) наибольший энергетический вклад в сигнал АЭ дает нулевая антисимметричная A0 волна, а при расположении источника АЭ в середине стенки объекта или вблизи нее (например, на глубине 40-60%) наибольший энергетический вклад дает нулевая симметричная S0 волна.

Максимум спектральной плотности сигнала, в котором преобладает нулевая антисимметричная A0 волна, лежит ниже частоты k·ƒ0, а максимум спектральной плотности сигнала, в котором преобладает нулевая симметричная S0 волна, лежит выше частоты k·ƒ0 (фиг. 1), где k=0.5÷1.5, ƒ0 - частота, на которой пересекаются графики зависимостей групповых скоростей A0 и S0 волн от частоты (фиг. 1). Она зависит от физических параметров материала (набора значений скоростей объемной продольной и поперечной волн или набора значений модуля Юнга, плотности и коэффициента Пуассона) и толщины стенки.

Все это позволяет осуществить следующую методику для определения глубины проникновения и развития коррозии методом акустической эмиссии на тонкостенном объекте путем анализа осциллограммы АЭ сигнала.

1. Регистрируют осциллограмму АЭ сигнала. Для уменьшения влияния шумов и переотражений, которые могут повлиять на спектр сигнала, от осциллограммы сигнала может быть отрезана ее начальная и/или конечная части.

2. Определяют долю nS0 симметричной S0 волны Лэмба в сигнале и/или долю nA0 антисимметричной A0 волны Лэмба в сигнале. Эти доли могут быть определены следующим образом.

2.1. Рассчитывается характерная частота, на которой групповые скорости нулевой симметричной S0 и нулевой антисимметричной A0 волн Лэмба равны между собой. Эта частота зависит от физических параметров материала (набора значений скоростей объемной продольной и поперечной волн или набора значений модуля Юнга, плотности и коэффициента Пуассона) и толщины стенки.

Для упрощения расчетов можно приблизительно взять ƒ0=(0.6÷0.7)

где VT- скорость объемной поперечной волны в материале контролируемого объекта, Н - толщина стенки. Для объектов из стали можно использовать еще более простое соотношение: ƒ0=2000 МГц·мм/H.

2.2. Выбирают полученный экспериментально для соответствующих параметров объекта коэффициент k=0.5÷1.5, определяющий возможный диапазон выбора частоты для осуществления сравнений долей исследуемых волн Лэмба. Значение коэффициента k зависит от физических параметров специфики объекта (коэффициента затухания акустического сигнала, резонансных частот объекта и других) и АЧХ применяемого преобразователя акустической эмиссии.

2.3. По осциллограмме сигнала рассчитывается его спектр.

2.4. Определяются энергии сигнала в одном или двух частотных диапазонах: первый (обязательный) диапазон выше частоты k·ƒ0, второй (необязательный) диапазон ниже частоты k·ƒ0 (фиг.2). Отношения энергий в этих 2 диапазонах к полной энергии сигнала считают равными долям нулевой симметричной и нулевой антисимметричной волн в сигнале соответственно.

3. По долям или отношению долей судят о глубине проникновения коррозии: чем выше доля nS0, или чем выше соотношение nS0/nA0, или чем ниже доля nA0, тем ближе коррозионный дефект к центру стенки. По энергии высоких частот ЕВЫС приблизительно определить глубину h проникновения локальной коррозии можно по формуле

или или

4. О развитии коррозии судят по изменению во времени глубины проникновения коррозии и/или по количеству приходящих в единицу времени сигналов акустической эмиссии с глубиной проникновения коррозии больше заданной.

5. Для определения глубины и/или развития коррозии в заданной области на объекте контроля при помощи анализа времени прихода сигналов на различные преобразователи акустической эмиссии могут быть выделены сигналы, приходящие из указанной области. Это выделение сигналов может проводиться, например, согласно описанию точечного способа локации источников АЭ из ГОСТ Р 52727-2007.

1. Способ определения глубины локальной (местной) коррозии и слежения за ее развитием методом акустической эмиссии на тонкостенном объекте, заключающийся в том, что на контролируемом изделии размещают один или несколько преобразователей акустической эмиссии, регистрируют осциллограмму сигнала, отличающийся тем, что по осциллограмме сигнала определяют долю nS0 симметричной S0 волны Лэмба в сигнале и/или долю nA0 антисимметричной А0 волны Лэмба в сигнале и по полученной доле, или по полученным долям, или по соотношению долей судят о глубине и развитии коррозии.

2. Способ по п.1, отличающийся тем, что доли S0 и А0 волн определяют следующим образом: по значению толщины Н стенки объекта контроля и на основе физических параметров материала объекта вычисляют частоту f0, на которой групповые скорости нулевой симметричной S0 и нулевой антисимметричной А0 волн Лэмба равны между собой, выбирают полученный экспериментально для соответствующих параметров объекта коэффициент k=0,5÷1,5, для сигнала акустической эмиссии в качестве доли нулевой симметричной S0 волны используют отношение энергии ES0, лежащей в частотном диапазоне выше частоты k·f0, к полной энергии сигнала EΣ:nS0=ES0/EΣ в качестве доли нулевой антисимметричной А0 волны используют отношение энергии ЕA0, лежащей в частотном диапазоне ниже частоты k·f0, к полной энергии сигнала ЕΣ:nA0A0/EΣ.

3. Способ по п.2, отличающийся тем, что частоту f0 определяют по формуле f0=(0,6÷0,7)VT/H или f0=2000 кГц·мм/Н, где VT - скорость объемной поперечной волны в материале контролируемого объекта.

4. Способ по п.1, отличающийся тем, что глубину h проникновения коррозии определяют по формуле или или

5. Способ по п.1, отличающийся тем, что о развитии коррозии судят по изменению во времени глубины проникновения коррозии и/или по количеству приходящих в единицу времени сигналов акустической эмиссии с глубиной проникновения коррозии, больше заданной.

6. Способ по п.1, отличающийся тем, что при помощи анализа времен прихода сигналов на различные преобразователи акустической эмиссии выделяют сигналы, приходящие из заданной области.

7. Способ по п.1, отличающийся тем, что от осциллограммы сигнала отрезается ее начальная и/или конечная части для уменьшения влияния шумов и переотражений.



 

Похожие патенты:

Изобретение относится к области обнаружения локальных дефектов в проводниках с использованием акустической эмиссии и может найти применение для выявления скрытых локальных дефектов в различных металлических конструктивных элементах, находящихся в статическом состоянии или в процессе движения.

Изобретение относится к области технической диагностики и неразрушающего контроля конструкций с использованием метода акустической эмиссии. .

Изобретение относится к области технической диагностики и неразрушающего контроля конструкций с использованием метода акустической эмиссии. .

Изобретение относится к методам неразрушающего контроля прочности и предназначено для оценки остаточного ресурса стального железнодорожного ригеля, который из-за периодического прохождения поездов и частичной разгрузки их бугелями токопровода работает в условиях статического или циклического знакопостоянного нагружения.

Изобретение относится к области неразрушающего контроля и диагностики механического состояния материала и изделий и может быть использовано для прогнозирования прочности и ресурса изделий при их силовом нагружении.

Изобретение относится к горному делу и предназначено для определения напряжения предразрушения горной породы, то есть для ранней диагностики ее предельного состояния, соответствующего потере прочности при сжатии.

Изобретение относится к неразрушающему контролю металлических конструкций с использованием метода акустической эмиссии. .

Изобретение относится к области контрольно-измерительной техники и может быть использовано, например, в газовой и нефтедобывающей промышленности для обнаружения твердой фазы в газожидкостном потоке в трубопроводе.
Изобретение относится к исследованию деформаций и напряжений и может быть использовано для исследования деформаций и напряжений в деталях, например в элементах металлических конструкций инженерных сооружений.

Изобретение относится к области диагностики конструкций и может быть использовано для оценки состояния стенки трубопровода, в частности для оценки состояния нефтепроводов, трубопроводов центрального отопления, горячего и холодного водоснабжения коммунального хозяйства городов

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля качества сварных швов методом акустической эмиссии в процессе сварки

Изобретение относится к различным технологиям, связанным с пропиткой материала жидким реагентом, например к области электротехники (пропитка электродвигателей), а именно к контролю качества процесса пропитки

Изобретение относится к неразрушающему контролю металлических мостовых конструкций с использованием метода акустической эмиссии и тензометрии

Изобретение относится к неразрушающему контролю колец подшипников буксового узла железнодорожного транспортного средства с использованием метода акустической эмиссии

Изобретение относится к неразрушающему контролю и может быть использовано при прочностных испытаниях конструкций, работающих в среде с высоким уровнем шумов и помех, например при выполнении контроля рельсов в момент прохождения железнодорожного состава

Изобретение относится к диагностированию оборудования и различных изделий на основе использования акустико-эмиссионного метода неразрушающего контроля и может быть использовано в химической, нефтехимической, энергетической, металлургической промышленности, на объектах транспорта
Наверх