Способ получения тонких пленок, содержащих наноструктурированный диоксид олова

Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике. Технический результат заключается в получении однородных упорядоченных структур диоксида олова. Сущность изобретения: в способе получения тонких пленок, содержащих наноструктурированный диоксид олова, электрохимически заполняют металлическим оловом поры в ячейках наноструктурированного оксида алюминия, после чего окисляют олово на воздухе при температуре 250-450°С в течение 40-90 минут.

 

Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике.

Известен способ получения высокодисперсного порошка диоксида олова (АС СССР №1696390, C01G 19/02), который предполагает окисление металлического олова кислородом при температуре 1700-3200°С при определенных углах подачи струи кислорода в реакционную зону.

Известны методы получения наноматериалов, основанных на использовании газофазного синтеза, плазмохимии, осаждений из полученных растворов и т.д. (А.И.Гусев. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2007, с.416). Они предполагают получение высокодисперсных нанокристаллических порошков твердой среды, в частности оксидов с последующим компактированием, в том числе осаждением на подложку (патент США №6036774, С30В 23/00, 2000).

Известен способ получения газочувствительного элемента на основе диоксида олова путем термического напыления олова на диэлектрическую подложку, последующее его термическое окисление в среде инертного газа и термического отжига в динамическом вакууме (заявка РФ №2002133540, С23С 14/18, 2004).

Известен способ получения ферромагнитных наночастиц металла с использованием электрохимического восстановления металла до нульвалентного состояния в инертных пористых матрицах оксида алюминия, получаемых электрохимической анодной обработкой алюминия (патент США №4808279, G11B 5/84, 1989), а также известно получение полупроводниковых наночастиц с использованием пористой матрицы оксида алюминия (патент США №5202290, H01L 21/20, 1993).

Рассмотренные методы в своей основе предполагают использование уже высокодисперсных порошков металла, либо реализацию синтеза оксида при высоких температурах, давлениях и других энергетически затратных условиях. При этом не достигается определенного упорядоченного расположения наноструктур в системе, например в тонких пленках, что зачастую диктуется конкретными технологиями.

Технический результат заключается в получении однородных упорядоченных структур диоксида олова.

Технический результат достигается тем, что способ получения тонких пленок, содержащих наноструктурированный диоксид олова, заключается в электрохимическом заполнении металлическим оловом пор в ячейках наноструктурированного оксида алюминия и последующим окислением олова на воздухе при температуре 250-450°С в течение 40-90 минут.

Как известно [1], при электрохимическом анодном окислении в растворах кислот на алюминии образуется пористая оксидная пленка с регулярной наноструктурой в виде одинаковых пористых ячеек с диаметром пор 10-30 нм и плотностью (10-70)·109 частиц на см2, расположенных ортогонально поверхности алюминия.

Путем электрохимического осаждения с использованием, например, кислых электролитов или их модификаций (а.с. №682581, C25D 3/32, 1979; патенты РФ №1678094, 1994; №2208664, 2003) поры заполняются металлическим оловом.

Затем система подвергается отжигу на воздухе при температуре 250-450°С в течение 40-90 минут. При этом металлическое олово подвергается окислению с образованием диоксида. При температуре ниже 250°С очень медленно идет реакция окисления, а при температурах более 450°С возможно разложение полученного соединения.

Пример.

1. Получение наноструктурированного анодного оксида на алюминии.

Электрохимическое анодное оксидирование алюминия производится в 10% водном растворе серной кислоты при плотности тела 10 мА/см2. Толщина оксида при этом пропорциональна времени оксидирования, а количество пористых ячеек составляет порядка 5,7·1017 м-2 (см. [1]).

2. Заполнение пор в ячейках наноструктурированного оксида алюминия. Операция производится электрохимически в водном кислом электролите следующего состава:

серно-кислое олово 20 г/л;

сульфосалициловая кислота 20 г/л;

серная кислота 9 г/л.

Одним электродом является образец алюминия с нанесенным наноструктурированным оксидом, другой электрод-графит. Ток переменный, напряжение 20 В, время обработки 10 минут.

После обработки образцы промывают и сушат.

3. Окисление олова в наноячейках.

Операция производится на воздухе при температуре 350°С в течение 60 минут.

Литература

1. Анодные оксидные покрытия на легких сплавах. Под общ. Ред. И.Н.Францевича. Киев: Наукова думка, 1977, с.259.

Способ получения тонких пленок, содержащих наноструктурированный диоксид олова, заключающийся в электрохимическом заполнении металлическим оловом пор в ячейках наноструктурированного оксида алюминия и последующем окислении олова на воздухе при температуре 250-450°С в течение 40-90 мин.



 

Похожие патенты:
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленок, содержащих бор на поверхности полупроводниковых материалов.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленочных диэлектриков, для маскирования поверхности кремниевых пластин при проведении диффузионных процессов.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения защитных пленок. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления пленок с пониженной дефектностью. .
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения тонкопленочных конденсаторов. .

Изобретение относится к технологии осаждения диоксида кремния на подложке из раствора при низких температурах таким образом, чтобы получить гомогенный рост диоксида кремния.
Изобретение относится к области технологии полупроводниковых приборов. .
Изобретение относится к области металлооксидных полупроводниковых технологий. .

Изобретение относится к области технологии производства полупроводниковых приборов. .

Изобретение относится к микро- и наноэлектронике и может быть использовано в производстве СБИС, полевых нанотранзисторов, а также устройств оптической волоконной связи.

Изобретение относится к области производства прочных композиционных материалов. .

Изобретение относится к способу и устройству ионно-плазменного нанесения многокомпонентных пленочных покрытий. .
Изобретение относится к химической технологии получения нанопорошков композиционных материалов на основе оксидов свинца, титана и циркония, используемых для получения керамики со специальными свойствами.

Изобретение относится к изготовлению наноструктурированных материалов воздействием концентрированных потоков энергии и может быть использовано при получении наноразмерных пористых структур.
Изобретение относится к области обработки наноструктур. .

Изобретение относится к области офтальмологии и может быть использовано для хирургической коррекции миопического астигматизма. .

Изобретение относится к области машиностроения и приборостроения и может быть использовано в производстве различных видов технологического оборудования, приборов и металлической упаковки.
Изобретение относится к технологии получения наноматериалов, в частности наночастиц теллурида кадмия, и может быть использовано для создания оптических приборов, детекторов ионизирующих излучений, катализаторов.

Изобретение относится к кузнечно-прессовому оборудованию, в частности к машинам для холодной объемной обработки методом локального деформирования с предварительной пластификацией металла заготовок.
Изобретение относится к получению частиц платино-титановых сплавов нанометрового размера. .

Изобретение относится к способам получения наночастиц и может быть использовано при осуществлении процессов нанесения высокоэффективных каталитических нанопокрытий
Наверх