Способ преобразования тепловой энергии в электрическую энергию

Изобретение может быть использовано в электрических машинах для прямого преобразования тепловых эффектов в электричество. Замкнутый магнитопровод содержит обмотку возбуждения, получающую питание от источника постоянного тока, и вставку, выполненную из ферромагнитного материала, обладающего теплотой фазового перехода второго рода, при котором материал теряет свои магнитные свойства, с пониженной точкой Кюри, например пермаллой, точка Кюри которого равна 70°С. Эту вставку подвергают нагреву до температуры, при которой она теряет свои магнитные свойства; затем эту вставку охлаждают до температуры, при которой ее магнитные свойства восстанавливаются, процесс нагрева и охлаждения протекает в виде чередующихся циклов. В результате в магнитопроводе происходит периодическое изменение магнитного потока, что приводит к появлению ЭДС в обмотке, охватывающей магнитопровод. Изобретение обеспечивает прямое преобразование тепла в электричество и высокий КПД преобразования. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к электрическим машинам, в которых производится прямое преобразование тепловых эффектов в другой вид энергии.

Известен способ преобразования тепловой энергии в механическую с использованием эффекта Пельтье (патент РФ № 2298278, МПК Н02N 10/00 «Электрический двигатель», опубликован 27.04.2007).

Недостаток известного способа заключается в том, что для его осуществления используется сложная система преобразования с большим числом механических элементов, что приводит к низкой надежности устройств, реализующих данный способ.

Известен также способ преобразования тепловой энергии в механическую с использованием эффекта Пельтье, в котором электрическая энергия сначала преобразуется в тепловую с последующим переводом тепловой энергии в механическую (патент РФ № 2302072, МПК Н02N 10/00 «Электрический привод (варианты)», опубликован 27.06.2007).

Известный способ преобразования характеризуется несколько более простой кинематической схемой и, по нашему мнению, устройства, выполненные по данному способу, имеют более высокую надежность.

Однако известному способу свойственны недостатки, которые заключаются в двойном преобразовании энергии, что понижает КПД системы в целом.

Задачей изобретения является создание способа прямого преобразования тепловой энергии в электрическую энергию при отсутствии каких-либо механических звеньев.

Дополнительно решается задача по повышению КПД преобразования.

Указанная задача решается за счет того, что в способе преобразования тепловой энергии в электрическую энергию формируют замкнутую магнитную цепь, в которой выполняют ферромагнитную вставку, обладающую температурой фазового перехода второго рода, при котором материал теряет свои магнитные свойства при нагревании, в магнитной цепи создают постоянное магнитное поле, подвергают ферромагнитную вставку нагреву до состояния, при котором она теряет свои магнитные свойства с последующим охлаждением до состояния, при котором магнитные свойства вставки восстанавливаются, полученные за счет последовательных циклических нагревов и охлаждений изменения магнитного поля в замкнутой магнитной цепи используют для изменения величины магнитного поля и генерирования электрической энергии.

В варианте технического решения магнитную вставку выполняют с пониженной точкой Кюри.

В варианте технического решения замкнутую магнитную цепь выполняют из трех ветвей, постоянное магнитное поле создают в центральной ветви, ферромагнитные вставки выполняют в крайних ветвях магнитопровода, в которых и производят поочередные взаимо противоположные циклические нагревы и охлаждения.

Предложенный способ позволяет получать в приемнике (электромагнитной катушке, намотанной на сердечник) знакопеременные импульсы ЭДС, которые после выпрямления и последующего преобразования используют для получения электрической энергии. При этом конструкция устройства, выполненного по данному способу, предельно проста и не содержит каких-либо подвижных кинематических звеньев.

Выполнение магнитной вставки с пониженной точкой Кюри позволяет сократить потери при циклических нагревах и охлаждениях.

Выполнение замкнутой магнитной цепи из трех ветвей, в которых магнитное поле создают в центральной ветви, ферромагнитных вставок - в крайних ветвях магнитопровода и поочередное осуществление взаимо противоположных циклических нагревов и охлаждений ферромагнитных вставок позволяют повысить эффективность получения электрической энергии.

Заявленное изобретение иллюстрируется фигурами.

На фиг.1 представлена принципиальная схема устройства, реализующего данный способ.

На фиг.2 показан пример применения.

Устройство, реализующее предложенный способ, по преобразованию тепловой энергии в электрическую энергию выполнено следующим образом. Замкнутый магнитопровод 1 (фиг.1) содержит обмотку возбуждения 2, получающую питание от источника постоянного тока (не показан), создающую постоянное поле и формирующую магнитный поток в магнитопроводе. В магнитопроводе 1 имеется вставка 3, выполненная из ферромагнитного материала, обладающего способностью образовывать фазовый переход второго рода, при котором материал теряет свои магнитные свойства при нагревании, с пониженной точкой Кюри. В качестве такого материала может служить, например пермаллой, имеющий температуру фазового перехода, при которой он теряет свои магнитные свойства при пониженной точке Кюри (около 70°С). На магнитопровод намотана обмотка возбуждения 4.

Способ реализуется следующим образом. Вставку 3 подвергают нагреву до температуры, при которой она теряет свои магнитные свойства. Затем эту вставку охлаждают до температуры, при которой магнитные свойства вставки 3 восстанавливаются. Этот процесс нагрева и охлаждения обеспечивают в виде чередующихся циклов. В результате этих циклов в магнитопроводе 1 происходят периодические изменения магнитного потока, что приводит к появлению ЭДС в обмотке 4. При изменении магнитного поля Ф в обмотке 4, согласно закону Максвелла, будет генерироваться э.д.с. в соответствии с формулой:

е=w×dФ/dt,

где w - число витков обмотки 4, dФ/dt - изменение магнитного поля. Полученную, таким образом, э.д.с. можно использовать как источник электрической энергии.

В варианте технического решения замкнутую магнитную цепь выполняют из трех ветвей, постоянное магнитное поле создают в центральной ветви, ферромагнитные вставки выполняют в крайних ветвях магнитопровода, в которых и производят поочередные взаимо противоположные циклические нагревы и охлаждения.

Пример применения. Два одинаковых замкнутых магнитопровода 1 и 1' имеют общую обмотку возбуждения 2 (фиг.2), которая охватывает смежные ветви магнитопроводов. По обмотке 2 протекает постоянный ток, создающий магнитные поля в указанных магнитопроводах. В свою очередь магнитопроводы 1 и 1' содержат ферромагнитные вставки 3 и 3' с пониженной точкой Кюри, обладающие способностью образовывать тепловой фазовый переход. На магнитопроводах имеются приемные обмотки соответственно 4 и 4'. Источником циклических нагревов и охлаждений является воздушный насос 5, поршень которого 6 приводит возвратно-поступательное движение от внешнего привода на (не показан). Насос 5 имеет две замкнутые камеры 7 и 8, разделенные поршнем 6. Камеры с помощью шлангов 9 и 10 механически связаны с вставками соответственно 3 и 3'. Знакопеременный цикл нагрева и охлаждения формируется за счет циклического возвратно-поступательного движения поршня 6. В результате чего имеет место периодическое сжатие и разрежение в камера 7 и 8. В камере, где воздух сжимается, происходит нагревание воздуха, а в камере с разрежением происходит охлаждение воздуха. Через шланги 9 и 10 эта температура передается на соответствующие вставки. Эти циклы и вызывают соответственно поочередный нагрев и охлаждение вставок 3 и 3'. За счет этих циклических нагревов периодически и меняется магнитное состояние в магнитопроводах. Следствием этих изменений является вариация магнитного потока в магнитопроводах 1 и 1' и появление э.д.с. в обмотках. 4 и 4'. Полученное напряжение выпрямляется в выпрямителях 11 и 12 и поступает потребителю электрической энергии. При этом, насос должен иметь охладитель (не показан), предупреждающий постепенное повышение средней температуры в камерах насоса из-за потерь на трение. Насос может быть сочленен, например, с поршневой системой одного из цилиндров двигателя внутреннего сгорания. Очевидно, что ветви магнитопровода, в котором имеется обмотка возбуждения 2, могут быть объединены в одну ветвь.

Предлагаемое изобретение может найти широкое применение для преобразования тепловой энергии в электрическую энергию в устройствах, в которых происходят циклические процессы с нагревом и охлаждением. Особенность способа состоит в том, что в системе генерации электроэнергии отсутствуют подвижные кинематические звенья, что способствует высокому КПД системы и высокой ее надежности.

1. Способ преобразования тепловой энергии в электрическую энергию, заключающийся в том, что формируют замкнутую магнитную цепь с ферромагнитной вставкой из материала, обладающего температурой фазового перехода второго рода, при которой материал теряет свои магнитные свойства при нагревании, в магнитной цепи создают постоянное магнитное поле, подвергают ферромагнитную вставку нагреву до состояния, при котором она теряет свои магнитные свойства с последующим охлаждением до состояния, при котором магнитные свойства вставки восстанавливаются, полученные за счет последовательных циклических нагревов и охлаждений изменения магнитного поля в замкнутой магнитной цепи используют для генерирования электрической энергии.

2. Способ по п.1, отличающийся тем, что магнитную вставку выполняют с пониженной точкой Кюри.

3. Способ по любому из пп.1 и 2, отличающийся тем, что замкнутую магнитную цепь выполняют из трех ветвей, постоянное магнитное поле создают в центральной ветви, ферромагнитные вставки выполняют в крайних ветвях магнитопровода, в которых и производят поочередные взаимопротивоположные циклические нагревы и охлаждения.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в качестве привода для перемещения рабочих органов исполнительных механизмов, применяемых в точном машиностроении, приборостроении, робототехнике, в частности может быть использовано для создания сервомеханизмов различного назначения.

Изобретение относится к теплоэнергетике и позволяет использовать тепловую энергию для получения электрической энергии путем модуляции теплового потока. .

Изобретение относится к электротехнике, к электрогенерирующим установкам, работающим на низкопотенциальной воде, и может быть применено на сбросе в открытый водоем воды, охлаждающей конденсаторы атомных и тепловых электростанций.

Изобретение относится к электротехнике и может быть использовано в электрогенерирующих установках, работающих на жидком низкопотенциальном источнике энергии. .

Изобретение относится к области электротехники, точнее к электрическим двигателям, использующим тепловой эффект. .

Изобретение относится к энергетике, а более конкретно к термоэлектрогенераторам. .

Изобретение относится к области электротехники для электропитания объектов. .

Изобретение относится к электротехнике и может быть использовано в электрогенераторах и других электромашинах, используемых в различных областях хозяйственной деятельности человека.

Изобретение относится к электроэнергетическим системам на базе топливных элементов. .

Изобретение относится к электрическим машинам, в которых производится прямое преобразование тепловых эффектов в другой вид энергии

Изобретение относится к теплоэнергетике и позволяет генерировать электрическую энергию за счет модуляции теплового потока, проходящего через электрический конденсатор с температурно-зависимой емкостью, используя разницу температур в окружающей среде

Изобретение относится к теплоэнергетике и позволяет генерировать электрическую энергию за счет модуляции теплового потока, проходящего через электрический конденсатор с температуро-зависимой емкостью

Изобретение относится к области электротехники и физики магнетизма и может быть использовано при построении модулей стационарных или мобильных энергетических устройств, использующих прямое преобразование тепловой энергии окружающей среды

Изобретение относится к энергомашиностроению и может быть использовано для преобразования гравитационной энергии в электрическую

Изобретение относится к электротехнике и предназначено для преобразования тепловой энергии окружающей среды в механическую энергию вращения кольца. В прозрачную цилиндрическую вакуумную колбу помещено вращающееся кольцо с осью вращения, край которого размещен в зазорах постоянных магнитов подковообразной формы, эквидистантно расположенных вокруг него. На колбе закреплены элементы магнитного подвеса вращающегося кольца, ротор первичного раскручивания оси вращения и съемный узел, создающий вращающееся магнитное поле. Кольцо выполнено из смеси парамагнитного и диамагнитного вещества с такими концентрациями x1 и x2 этих ингредиентов, что выполнены условия x1X1-x2|X2|→0, x1+x2=1, где X1 и Х2 - магнитные восприимчивости соответственно парамагнитного и диамагнитного веществ смеси, в течение времени пребывания любого дифференциального объема смеси dv=Sdx, где S - поперечное сечение кольца, охваченного магнитным зазором, dx - дифференциальный слой кольца вдоль направления движения смеси в магнитном зазоре по оси х, равного Δt=L/ωR, где L - длина магнитного зазора вдоль оси х, ω - угловая скорость вращения кольца (диска), R - радиус кольца (диска), а также условие, что постоянная магнитной вязкости парамагнитного вещества т1 в пять и более раз меньше постоянной магнитной вязкости диамагнитного вещества т2. 3 з.п. ф-лы, 4 ил.

Изобретение относится к физике, к прямому преобразованию энергии излучения радиоактивных изотопов и отходов ядерных реакторов в механическую энергию вращения и может быть использовано в качестве силового привода различных механизмов. Технический результат состоит в повышении эффективности охлаждения и упрощении эксплуатации путем и исключения необходимости в динамической балансировке и осуществления теплопередачи и нагрузки за пределами действия радиации. Радиационно-магнитный двигатель содержит радиационно-защитный статор с постоянным магнитом, средства отвода тепла охлаждающей жидкостью. Система изменения магнитных свойств ротора выполнена в виде двух полуцилиндров на общей оси, один из которых прозрачен для радиоактивного излучения от источника, расположенного в центре полуцилиндров, а другой является его экраном. Ферромагнитный ротор из радиационно-чувствительного материала выполнен в виде неподвижного трубчатого змеевика, плотно сопряженного с внутренней поверхностью статора и заполненного охлаждающей магнитной жидкостью в виде суспензии радиационно-чувствительных частиц редкоземельных ферромагнетиков и радиационно-стойкого жидкого теплоносителя, который непосредственно сообщается с закрытым гидроприводом, включающим гидроаккумулятор, радиатор охлаждения и лопастную турбину либо объемный гидродвигатель, кинематически связанные с полезной механической нагрузкой. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики, в частности к электростанциям, работающим на базе глубинного тепла Земли. Петротермальная электростанция содержит скважину, пробуренную до глубины с температурой забоя не менее 600°С, теплоотборную систему, расположенную в скважине, содержащую паровой котел, два присоединенных к нему трубопровода, каждый из которых состоит из отдельных частей, причем части трубопровода для нагнетания воды соединены с частями паропровода для отвода пара жесткими перемычками с образованием секций, при этом часть скважины в зоне расположения парового котла с захватом зоны его разогрева, заполнена водонепроницаемым материалом, остальная часть скважины заполнена породой, поднятой на поверхность при бурении скважины с соблюдением порядка ее расположения в земной коре в месте бурения. Устройство монтажа теплоотборной системы петротермальной электростанции включает монтажную вышку с гидроподъемником, монтажный стол, выполненный в виде сварочного стола, раздвижным, с выемками, образующими в центре стола при соединении этих частей проем с возможностью продвижения через него в скважину секций теплоотборного устройства. Обеспечивает надежную работу петротермальной электростанции, повышение мощности. 2 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике, к системам автоматической стабилизации напряжения постоянного тока, вырабатываемого непосредственным преобразованием тепловой энергии внешней среды, например водных бассейнов, и может быть использовано в экологически чистой электроэнергетике. Технический результат состоит в стабилизации напряжения постоянного тока при вариации внешней нагрузки и увеличении срока действия и надежности. Устройство автоматического управления электрогенератором содержит ферромагнитное кольцо, механически связанное с осью вращения через траверсы, одна часть которого совмещена с насыщающим магнитным полем сильного постоянного магнита, а другая связана с тепловыделяющей средой. Фильтр нижних частот, или интегратор, последовательно соединен с блоком управления подмагничиванием, выход которого соединен с катушкой подмагничивания. Магнитный зазор сильного постоянного магнита выполнен из двух частей, первая из которых образует однородное магнитное поле с напряженностью, обеспечивающей на длине L этой части зазора доведение магнитной восприимчивости ферромагнетика до максимального значения, а вторая длиной L снабжена катушкой подмагничивания и образует насыщающее магнитное поле в начале этой части зазора и далее в направлении движения ферромагнитного кольца линейно возрастающее по напряженности магнитное поле к концу зазора. Ось вращения механически связана с измерителем частоты вращения оси и бесколлекторным генератором постоянного тока, подключенным к нагрузке и включающем раздельные рабочую обмотку и обмотку подмагничивания. Рабочая обмотка подключена к аккумуляторной батарее, к внешней нагрузке, к источнику опорного напряжения, к блоку управления подмагничиванием и к первому входу устройства сравнения. Обмотка подмагничивания подключена к аккумуляторной батарее через переключатель перемены полярности постоянного тока. Выход источника опорного напряжения подключен ко второму входу устройства сравнения, выход которого соединен с управляющим входом блока управления подмагничиванием через фильтр нижних частот. 10 ил.

Изобретение относится к электрическим термомагнитным приборам на твердом теле, предназначенным для генерации электрической энергии путем ее непосредственного преобразования из тепловой энергии, и может быть использовано в качестве источника питания электрооборудования. Технический результат: повышение эффективности процесса преобразования тепловой энергии в электрическую. Сущность: способ заключается в том, что преобразование тепловой энергии в электрическую осуществляют путем периодического изменения состояния намагниченности распложенного в зазоре магнитопровода термочувствительного ферромагнитного элемента, нагретого до соответствующей ферромагнитному материалу температуры Кюри, находящегося в фазе парапроцесса. Изменение намагниченности термочувствительного ферромагнитного элемента осуществляют путем циклического изменения тока подмагничивания. Устройство содержит магнитопровод 1 с источником магнитного поля 2, в зазоре которого расположен термочувствительный ферромагнитный элемент 3, нагреватель 4, выходную обмотку 5, входную обмотку 6, размещенные на магнитопроводе, термоизолятор 7, генератор-возбудитель 8, подключенный к входной обмотке 6, и накопитель электрической энергии 9, подключенный к выходной обмотке 5. 2 н.п. ф-лы, 4 ил.
Наверх