Способ спутниковой навигации мобильных объектов железнодорожного транспорта на основе известной траектории движения

Изобретение относится к способу спутниковой навигации мобильных объектов железнодорожного транспорта на основе известной траектории движения. Техническим результатом является расширение области применения и повышение точности спутниковой навигации за счет определения координат мобильного объекта путем линейной засечки его спутникового приемника, перемещающегося по известной траектории движения. Технический результат достигается тем, что эталонную координатную модель пути - известную траекторию движения представляют в единой с глобальной навигационной спутниковой системой системе ортогональных геоцентрических координат. Координаты точек эталонной координатной модели выражают в виде трех функций пикетажа, измеряют дальность, по крайней мере, от одного спутника глобальной навигационной спутниковой системы до мобильного объекта, на основе которой составляют уравнение сферы, и из совместного решения трех функций пикетажа и уравнения сферы определяют координаты и пикетаж мобильного объекта, а скорость и ускорение движения мобильного объекта определяют как первую и вторую производные пикетажа по времени по разностной схеме первого и второго порядка. 2 ил.

 

Изобретение относится к навигации и управлению мобильными объектами железнодорожного транспорта.

В настоящее время навигация всех видов транспорта основана на спутниковых радионавигационных системах (СРНС) типа ГЛОНАСС (Россия), GPS (США) и др. Железнодорожный имеет преимущество перед другими видами транспорта, состоящее в том, что траектория движения его зафиксирована на местности с высокой точностью, что, в свою очередь, позволяет определить эталонную координатную модель пути (ЭКМП) железнодорожной магистрали (RU 2287187, G06T 17/50, 10.11.06) и использовать ее в качестве известной траектории движения и системообразующего элемента спутниковых навигационных систем. Эта возможность пока не использована. Настоящее изобретение собственно и направлено на реализацию такой возможности.

Под ЭКМП понимают координатные функции (модели) расстояния пройденного по оси пути (пикетажа) в трехмерной ортогональной системе координат.

В известном способе определения местоположения мобильного объекта на цифровой электронной карте в системах управления движением поездов типа КЛУБ-У и КЛУБ-УП (Применение спутниковых технологий для решения задач управления железнодорожным транспортом. Информационное издание второй международной научно-практической конференции «Спутниковые технологии на службе железнодорожного транспорта» Москва, 24 июля 2008 г.) применяется координатная модель пути пониженной точности, которая не может использоваться в качестве системообразующего элемента для получения координатного решения.

Наиболее близким по технической сущности является принятый в качестве прототипа способ спутниковой навигации мобильных объектов (Соловьев Ю.А. Системы спутниковой навигации, М.: Эко-Трендз, 2000, с.36), в котором координаты мобильного объекта определяют линейной засечкой от четырех и более спутников и отображают положение мобильного объекта на цифровой навигационной карте.

Известное техническое решение не обеспечивает обратной связи координат мобильного объекта с известной траекторией движения.

Технический результат изобретения заключается в расширении области применения и повышении точности спутниковой навигации за счет определения координат мобильного объекта путем линейной засечки его спутникового приемника, перемещающегося по известной траектории движения (ЭКМП) даже от одного навигационного спутника.

Технический результат достигается тем, что в способе спутниковой навигации мобильных объектов железнодорожного транспорта на основе известной траектории движения согласно изобретению известную траекторию движения - эталонную координатную модель пути представляют в единой с глобальной навигационной спутниковой системой системе ортогональных геоцентрических координат, для чего координаты точек эталонной координатной модели выражают в виде трех функций пикетажа, измеряют дальность, по крайней мере, от одного спутника глобальной навигационной спутниковой системы до мобильного объекта, на основе которой составляют уравнение сферы, и из совместного решения трех функций пикетажа и уравнения сферы определяют координаты и пикетаж мобильного объекта, а скорость и ускорение движения мобильного объекта определяют как первую и вторую производные пикетажа по времени по разностной схеме первого и второго порядка.

Сущность заявляемого изобретения состоит в том, что ЭКМП представляют в единой с СРНС системе ортогональных координат {Oxyz} (фиг.1). Координаты точек ЭКМП выражают в виде функций пикетажа s:

Функции могут принимать различный вид, начиная от уравнения прямой до уравнений сплайнов различной степени, в частности кубических сплайнов. Для апроксимирующих кубических сплайнов, функции f1(s), f2(s), f3(s), для каждого прямолинейного, или криволинейного участка железнодорожного пути (см., например, Журкин И.Г., Нейман Ю.М. Методы вычислений в геодезии Учеб. пособие, М.: Недра, 1988) будут иметь вид:

f1(s)=a0+a1(s-s0)+a2(s-s0)2+a3(s-s0)3;

f2(s)=b0+b1(s-s0)+b2(s-s0)2+b3(s-s0)3;

f3(s)=c0+c1(s-s0)+c2(s-s0)2+c3(s-s0)3,

где ai, bi, ci: ∀i ∈ 0, 1, 2, 3 - известные коэффициенты кубического сплайна, полученные путем апроксимации эталонной координатной модели железнодорожного пути; s0 - пикетаж начала участка пути.

С помощью спутникового приемника СРНС измеряют дальность D от спутника до мобильного объекта, определяющую уравнение сферы

где х, у, z, xc, yc, zc - координаты антенны приемника и антенны передатчика на спутнике соответственно.

Из совместного решения уравнений (1-4) однозначно вычисляют координаты х, у, z точки приемника и пикетаж s мобильного объекта.

Определение дальностей до других спутников приводит к избыточности измерений. Однозначное и оптимальное статистическое решение (х, у, z, s) в этом случае находят методом наименьших квадратов.

Далее определяют скорость и ускорение движения мобильного объекта как первую и вторую производные пути s по времени.

Измерения дальностей в СРНС проводят через одинаковые и малые (обычно равные 1 сек) интервалы времени dt, поэтому скорость v и ускорение а движения мобильного объекта в любой точке i вычисляют в соответствии с разностной схемой первого и второго порядка по формулам:

где vx, vy, vz, ax, ay, az - проекции скорости и ускорения на оси координат.

Пример устройства для навигации мобильного объекта железнодорожного транспорта по известной траектории движения, представляющего измерительно-вычислительный комплекс (ИВК), приведен на фиг.2. Измерительно-вычислительный комплекс состоит из приемника 1 ГНСС (П), бортового компьютера 2 (БК) и специализированной геоинформационной системы 3 (СГИС) -ЭКМП, устанавливаемый на любой мобильный объект, передвигающийся по железнодорожному пути.

Определение координат мобильного объекта осуществляют предлагаемым устройством в соответствии со способом, изложенным в формуле изобретения, при этом поступающая из приемника 1 информация о векторе спутниковых координат и информация о векторе координат модели обрабатываются совместно с помощью одного из известных алгоритмов идентификации, в результате работы которого получают вектор искомых координат мобильного объекта и его пикетаж.

Способ спутниковой навигации мобильных объектов железнодорожного транспорта на основе известной траектории движения, заключающийся в том, что известную траекторию движения - эталонную координатную модель пути представляют в единой с глобальной навигационной спутниковой системой системе ортогональных геоцентрических координат, для чего координаты точек эталонной координатной модели выражают в виде трех функций пикетажа, измеряют дальность, по крайней мере, от одного спутника глобальной навигационной спутниковой системы до мобильного объекта, на основе которой составляют уравнение сферы, и из совместного решения трех функций пикетажа и уравнения сферы определяют координаты и пикетаж мобильного объекта, а скорость и ускорение движения мобильного объекта определяют как первую и вторую производные пикетажа по времени по разностной схеме первого и второго порядка.



 

Похожие патенты:

Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано в системах местоопределения радиоизлучающих средств УКВ-диапазонов.

Изобретение относится к спутниковой навигации и может быть использовано для повышения точности определения вектора состояния космических аппаратов. .

Изобретение относится к области радиоэлектроники и может быть использовано в радионавигационных системах ближней навигации. .

Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля. .

Изобретение относится к определению местоположения объектов с помощью спутников, в частности к способу определения местоположения абонентского аппарата в спутниковой системе связи с использованием характеристик сигналов связи.

Изобретение относится к радиотехнике и может быть использовано в системах определения местоположения объекта. .

Изобретение относится к спутниковым радионавигационным системам и может быть использовано для определения местоположения одного движущегося объекта относительно другого с сантиметровой точностью.

Изобретение относится к области радионавигации и может быть использовано для точного определения вектора состояния (пространственных координат, составляющих вектора скорости и времени) различных объектов по сигналам спутниковой радионавигационной системы (СРНС).

Способ местоопределения источника радиоизлучения (ИРИ) относится к радиотехнике, а именно к пассивным системам радиоконтроля. Достигаемый технический результат - повышение точности местоопределения ИРИ, функционирующих в труднодоступной местности. Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения источника радиоизлучения (ИРИ) множества датчиков (не менее четырех), конструктивно размещенных на беспилотных летательных аппаратах (БЛА) класса "мини" типа "мультикоптер". В состав каждого БЛА-датчика входит блок навигационно-временного обеспечения (НВО), ненаправленная антенна, панорамный приемник и приемопередатчик. В качестве средства доставки и обслуживания БЛА-датчиков, а также для ретрансляции координатной информации, поступающей с них, и передачи команд управления с наземного пункта управления и обработки (НПУО), используется беспилотный или пилотируемый летательный аппарат (ЛА) среднего класса (ЛА-ретранслятор). После доставки в предполагаемый район нахождения источников радиоизлучения, по командам с НПУО, БЛА-датчики распределяют в пространстве. Совокупность БЛА-датчиков и ЛА-ретранслятор формально образуют в пространстве многопозиционную систему радиоконтроля. Используется свойство мультикоптеров принимать неподвижное состояние в пространстве, позволяющее снизить фактор динамичности системы и сформировать в воздухе подобие стационарных наземных пунктов приема (один из которых центральный, расположенный на минимальном расстоянии от ЛА-ретранслятора, а остальные - периферийные) разностно-дальномерной системы (РДС) местоопределения. По сигналам блока НВО определяются координаты в пространстве каждого БЛА-датчика и осуществляется их высокоточная привязка к собственной системе координат РДС и к единому времени, для этого информация о координатах периферийных БЛА-датчиков в сформированной РДС передается на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик. На центральном БЛА-датчике по поступившим данным осуществляется определение местоположения ИРИ. 4 ил.

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат - сокращение времени определения принадлежности местоположения ИРИ к ограниченной области пространства. Сущность способа заключается в реализации синхронного по пространству и времени пеленгования ИРИ с последующей корреляционной обработкой потока сигналов от каждого из пеленгаторов для выявления сигналов тех ИРИ, координаты которых принадлежат априорно заданной «просматриваемой» области пространства. Пространственно-временная синхронизация реализуется путем одновременного формирования диаграмм направленности пеленгаторов, направление максимума которых ориентированоы на геометрический центр просматриваемого элемента области пространственного мониторинга ИРИ. 2 ил.

Изобретение относится к области радиотехники и может найти применение при обработке радиосигналов, а также в разностно-дальномерной системе местоопределения источников радиоизлучений. Достигаемый технический результат - повышение точности измерения взаимной задержки случайных сигналов в условиях аддитивного Гауссова шума и расширение арсенала действующих способов. Указанный результат достигается за счет того, что формируют и запоминают эталонные, рассчитанные аналитически, фазовые линии для различных значений задержек с шагом Δτ без учета воздействия аддитивного Гауссова шума; с помощью двух синхронно действующих аналого-цифровых преобразователей осуществляют дискретизацию зашумленного Гауссовым аддитивным шумом аналогового случайного сигнала x(t) и его задержанной на время τ3 копии y(t)=х(t-τ3); рассчитывают взаимную спектральную плотность (взаимный Фурье-спектр) сигналов х(t) и y(t); рассчитывают фазовую линию взаимной спектральной плотности (взаимного фазового Фурье-спектра) сигналов x(t) и y(t). По степени близости рассчитанной фазовой линии взаимной спектральной плотности к одной из эталонных фазовых линий взаимного фазового спектра принимается окончательное решение о значении взаимной задержки этих сигналов. 4 ил.

Изобретение относится к пассивным системам радиомониторинга радиоэлектронных средств, в частности может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Сущность способа определения координат местоположения ИРИ заключается в доставке в предполагаемый район нахождения ИРИ элементов пеленгации с учетом их взаимного расположения на местности и формирования угломерной системы определения местоположения. При этом угломерная система определения местоположения ИРИ формируется путем доставки пеленгационных постов (ПП) с учетом пространственных требований базы угломерной системы, состоящих минимум из двух измерительных элементов, осуществляющих оценку фазы принимаемого сигнала. На борту каждого носителя размещены средства поиска, обнаружения и определения параметров сигналов ИРИ, радионавигационного определения координат и приемопередачи данных. Для формирования одного ПП производится запуск по заданным координатам доставки в район размещения ИРИ минимум двух носителей. После фиксации в грунте и приведения в работоспособное состояние с помощью средств радионавигационного определения координат определяют координаты местоположения средств поиска, обнаружения и определения параметров сигналов ИРИ, значения которых передают на опорный пункт радиоконтроля (ПРК). Средства поиска, обнаружения и определения параметров сигналов каждого ПП осуществляют частотный поиск сигналов ИРИ и в случае их обнаружения измеряют значение фазы. Значения фазы и частоты принятого сигнала средства поиска, обнаружения и определения параметров сигналов ИРИ передают на опорный пункт радиоконтроля (ПРК), в котором на основе принятых данных определяют координаты местоположения ИРИ относительно координат точек доставки элементов ПП. Техническим результатом является повышение точности определения координат ИРИ, размещенных в труднодоступной местности. 1 ил.

Изобретение относится к пассивным системам радиоконтроля и может быть использовано в системах местоопределения радиоизлучающих средств. Достигаемый технический результат - снятие ограничения по взаимному пространственному расположению приемных каналов пеленгационных пунктов. Указанный результат достигается за счет того, что используют многопозиционную систему, содержащую минимум два разнесенных в пространстве пункта приема и обработки сигналов (ППОС) и информационно связанный с ними пункт определения пространственных параметров источника радиоизлучения (ПОПП). ППОС содержат по три произвольно расположенных относительно друг друга приемных канала (точки), в каждом из них производится оценка фазы принимаемой волны. При этом ППОС имеют координатную привязку каждого приемного канала (точки) в декартовой системе координат. Значения координат точек приема (каналов) и значения оценки фазы прихода волны в каждом канале поступают на ПОПП, в котором с использованием измеренных значений фаз ИРИ строят фазовые плоскости принимаемого поля каждым ППОС, а координаты ИРИ определяют по координатам середины минимального отрезка, соединяющего прямые нормалей к этим фазовым плоскостям. 2 ил.

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат изобретения - повышение эффективности определения координат ИРИ, размещенных в труднодоступной местности. Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения ИРИ минимум трех самораскрывающихся дистанционно управляемых летательных аппаратов (СДУБЛА), на борту которых установлена требуемая для радиомониторинга радиоэлектронная аппаратура. При этом доставка осуществляется пуском минимум трех носителей. Бортовая радиоэлектронная аппаратура включает устройства определения координат СДУБЛА, поиска и определения параметров сигналов ИРИ и приемопередачи необходимых данных. После доставки СДУБЛА в район размещения ИРИ бортовая радиоэлектронная аппаратура одновременно по сигналу «пуска» или автоматически приводится в работоспособное состояние, при этом определяют координаты местоположения СДУБЛА, передают их значения на пункт радиоконтроля. При необходимости изменяют местоположение СДУБЛА путем передачи соответствующих сигналов управления полетом. Осуществляют поиск, обнаружение и определение параметров сигналов ИРИ, значения которых также передают на пункт радиоконтроля. На пункте радиоконтроля по поступившим данным осуществляется определение местонахождения ИРИ относительно координат СДУБЛА. 1 ил.

Изобретение относится к радиотехнике, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано для высокоточного определения с помощью летательных аппаратов координат источников радиоизлучений (ИРИ), излучающих непрерывные или квазинепрерывные сигналы. Достигаемый технический результат - снижение аппаратурных затрат при реализации способа на базе изделий функциональной электроники, а при реализации способа на базе аппаратных средств цифровой обработки сигналов - повышение быстродействия за счет уменьшения количества арифметических операций. Указанный результат достигается за счет того, что способ определения координат ИРИ заключается в приеме сигналов ИРИ на трех летательных аппаратах, их ретрансляции на центральный пункт обработки и вычислении координат ИРИ по разностям радиальных скоростей, при этом дополнительно находятся доплеровские сдвиги частоты как аргумент максимизации амплитудного спектра произведения сигнала с одного ретранслятора на сигнал с другого ретранслятора, подвергнутый комплексному сопряжению и сдвигу на временную задержку, которая определяется как аргумент максимизации модуля функции взаимной корреляции преобразованных сигналов, полученных путем перемножения исходных сигналов на эти же сигналы, подвергнутые комплексному сопряжению и временному сдвигу на интервал T, превышающий величину, обратно пропорциональную удвоенной ширине спектра сигнала.

Изобретение относится к области радиотехники и может быть использовано в пассивных системах местоопределения (МО) источников радиоизлучения (ИРИ), размещенных на неровных участках местности. Достигаемый технический результат – снижение погрешности определения координат ИРИ. Сущность изобретения заключается в расположении четырех приемных пунктов (ПП), размещенных на беспилотных летательных аппаратах (БЛА) типа "мультикоптер" в районе предполагаемого нахождения ИРИ. В указанный район ПП доставляются посредством беспилотного или пилотируемого летательного аппарата среднего класса. В состав каждого ПП входят блок навигационно-временного обеспечения, ненаправленная антенна, панорамный приемник, приемопередатчик. В районе предполагаемого нахождения ИРИ приемные пункты распределяют в пространстве по команде с наземного пункта управления и обработки (НПУО), формируя, таким образом, разностно-дальномерную систему (РДС) МО. Приемные пункты располагают в вершинах тетраэдра: периферийные ПП в вершинах его нижнего основания, а опорный в вершине над основанием. В образованной РДС по сигналам блоков навигационно-временного обеспечения каждого ПП осуществляется определение их координат в пространстве, высокоточная привязка к собственной системе координат РДС и передача координатной информации о периферийных ПП на опорный. По команде с него все ПП выполняют поиск сигнала ИРИ в заданном частотном диапазоне и при обнаружении сигнала ретранслируют его на опорный. Прием и ретрансляция сигнала ИРИ приемными пунктами осуществляются их панорамными приемниками и приемопередатчиками соответственно. На опорном ПП на основе вычисления корреляции между сигналом, принятым на нем, и сигналами, ретранслированными с периферийных ПП, вычисляются и отправляются на НПУО координаты обнаруженного ИРИ. На НПУО оценивается значение погрешности полученных координат и в случае превышения требуемого значения, установленного оператором, осуществляется пересчет собственных координат всех ПП для их перестроения. Такое перестроение ПП относительно ИРИ выполняется до тех пор, пока погрешность определения его координат не установится ниже требуемого значения. 8 ил.

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения ИРИ с летательного аппарата (ЛА), в частности с беспилотного ЛА. Техническим результатом изобретения является повышение точности определения координат ИРИ в пространстве на основе использования сферических поверхностей положения (СПП) ИРИ, формируемых вращением окружностей Аполлония вокруг осей, соединяющих соответствующие фокусы. При этом в качестве фокусов окружностей Аполлония выступают точки расположения ЛА в 3-мерном пространстве в различные моменты времени. Способ основан на приеме радиосигналов ИРИ в заданной полосе частот ∆F перемещающимся в пространстве измерителем, размещенным на ЛА, измерении и запоминании первичных координатно-информативных параметров, в качестве которых используют амплитуды напряженностей электрического поля (АНЭП), с одновременным измерением и запоминанием вторичных параметров (ВП) - пространственных координат ЛА, при этом измеряют и запоминают N≥5 раз совокупности АНЭП и ВП в процессе перемещения ЛА по произвольной траектории, вычисляют N-1 коэффициентов окружностей Аполлония, формируют N-1 СПП ИРИ, а в качестве координат ИРИ в пространстве принимают координаты точки пересечения N-1 указанных СПП ИРИ. 1 з.п. ф-лы, 3 ил.
Наверх