Способ оценки остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора

Изобретение относится к технике эксплуатации ядерных канальных реакторов и предназначено для контроля за состоянием телескопических соединений трактов топливных ячеек в период проведения ремонта. Способ оценки остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора путем измерения величины остаточного перекрытия каждого телескопического соединения и сравнения с предельно допустимой величиной, в качестве измерительного средства используют видеоробот, соединенный с блоком преобразователем оптического сигнала, имеющим возможность перемещаться по кольцевому экрану бокового отражателя активной зоны реактора. Видеоробот в период нахождения между рядами трактов последовательно позиционируют на наружной поверхности трактов в верхней зоне телескопических соединений. Затем изображение зоны наблюдения переносят на масштабирующий экран монитора и производят измерение на экране расстояния от торца нижнего тракта до начала конусного перехода верхнего тракта. Величины остаточных телескопических перекрытий каждого телескопического соединения трактов и оценку их ресурса определяют по определенной зависимости. Изобретение направлено на снижение трудоемкости, сложности и обеспечение массового контроля телескопических соединений трактов топливных ячеек без извлечения тепловыделяющей сборки и технологических каналов из реактора. 2 ил.

 

Предлагаемое техническое решение относится к технике эксплуатации ядерных канальных реакторов, касается, в частности, способов оценки остаточного ресурса телескопических соединений трактов топливных ячеек и может быть использовано для контроля за состоянием телескопических соединений трактов топливных ячеек в период проведения ремонта.

В процессе эксплуатации ядерного уран-графитового реактора в результате радиационно-термических воздействий происходит объемная радиационная усадка графита, которая приводит к значительному сокращению геометрических размеров графитовых блоков и графитовых колонн, в частности, высота графитовых колонн может уменьшиться на 250-270 мм за 45 лет эксплуатации. По результатам контроля, проведенного на энергоблоке №1 Ленинградской АЭС, установлено максимальное уменьшение высоты колонн графитовой кладки реактора на 228 мм за 28 лет эксплуатации. В ядерных уран-графитовых реакторах предусмотрен конструктивный телескопический узел, выполняющий функцию центрирующего элемента ячейки реактора и компенсатора перемещений сборок реактора, связанных с изменением температуры и радиационной усадкой графита. Конструктивно узел выполнен в виде телескопического соединения трактов (ТСТ): верхний тракт жестко связан с нижней плитой, а нижний тракт - с графитовой колонной ячейки реактора. Проектный рабочий ход ТСТ составляет 225 мм. Указанный параметр является одним из основных критериев, определяющих длительность эксплуатации реактора. Радиационная усадка графитовой колонны на величину, соответствующую рабочему ходу ТСТ и более, недопустима.

С целью обеспечения безопасной работы ядерного реактора, требуется постоянно контролировать состояние ТСТ. В настоящее время известно два способа измерения и оценки остаточной величины ТСТ.

Первый из них заключается в измерении остаточной величины ТСТ со стороны внутренней поверхности трактов при извлеченной тепловыделяющей сборки (ТВС) через стенку технологического канала с помощью вихретокового преобразователя. (Федеральное агентство по атомной энергии, Общество с ограниченной ответственностью «Пролог» «Методика выполнения измерений геометрических параметров ТК и КСУЗ реакторов РБМК-1000» ШФВИ. ИСТК-5.000.00 МИ, г.Обнинск, 2006 г.). Недостатком способа является то, что для проведения контроля требуется извлечение ТВС с ее последующей загрузкой в ячейку.

Ближайшим аналогом заявляемого изобретения является способ измерения остаточной величины ТСТ со стороны внутренней поверхности трактов при извлеченном технологическом канале (ТК) с помощью специальной видео-измерительной системы. (Федеральное агентство по атомной энергии, Общество с ограниченной ответственностью «Инженерно-сервисный центр диагностики оборудования АЭС НИКИЭТ» ООО ИЦД НИКИЭТ « Методика внутриреакторного контроля наличия и измерения величины телескопического соединения верхнего тракта топливных ячеек и ячеек СУЗ реакторов РБМК-1000 Ленинградской АЭС при использовании системы контроля СКК-1», 840.38 М, Москва, 2005 г.). Оценку остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора определяют путем сравнения измеренных значений величин остаточного перекрытия каждого телескопического соединения с предельно допустимой величиной.

Недостатком способа является сложность и трудоемкость проведения работ, т.к. для проведения контроля требуется извлечение ТВС и ТК с последующим восстановлением ТК и загрузкой ТВС.

Задача, решаемая изобретением, заключается в снижении трудоемкости, сложности и в обеспечении массового контроля телескопических соединений трактов топливных ячеек без извлечения ТВС и технологических каналов из реактора.

Сущность данного технического решения заключается в том, что в способе оценки остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора путем измерения величины остаточного перекрытия каждого телескопического соединения и сравнения с предельно допустимой величиной предложено в качестве измерительного средства использовать видеоробот, соединенный с блоком преобразователем оптического сигнала, имеющим возможность перемещаться по кольцевому экрану бокового отражателя активной зоны реактора, при этом видеоробот в период нахождения между рядами трактов последовательно позиционируют на наружной поверхности трактов в верхней зоне телескопических соединений, затем изображение зоны наблюдения переносят на масштабирующий экран монитора и производят измерение на экране расстояния от торца нижнего тракта до начала конусного перехода верхнего тракта, а величины остаточных телескопических перекрытий каждого телескопического соединения трактов и оценку их ресурса определяют по зависимости:

где Aп = 225 мм - проектное значение величины перекрытия телескопического соединения трактов;

А - остаточная величина перекрытия телескопического соединения трактов (мм);

Вп = 320 мм - проектное значение расстояния от торца нижнего тракта до начала конусного перехода трубы верхнего тракта;

В - измеренное расстояние от торца нижнего тракта до начала конусного перехода трубы верхнего тракта (мм);

τ - остаточный ресурс телескопического соединения трактов (годы);

7 - максимальная годовая величина уменьшения телескопического соединения трактов (мм).

Оценка ресурса телескопических соединений трактов топливных ячеек по данному способу осуществляется без выгрузки топлива из ТК. Контроль всех ячеек реактора осуществляется в границах установленного временем на ремонт энергоблока, тем самым сокращается суммарное время простоя реактора, порядка трех месяцев за один капитальный плановый ремонт (в сравнении с существующим методом проведения контроля), и исключается вероятность расцепления ТСТ. Исключение выгрузки и последующей загрузки ТВС, снижает трудозатраты, исключает возможные случаи повреждения ТВС, экономят ресурс РЗМ.

Заявленный способ проиллюстрирован графическим материалом, на фиг.1, 2, где на фиг.1 представлена общая схема комплекта для измерения, а на фиг.2 дан фрагмент места проведения измерений на ТСТ.

Комплект (фиг.1) состоит из транспортной тележки 1 с размещенными на ней дистанционно управляемыми видеороботом 2 и мощным осветителем 3. Видеоробот 2 и осветитель 3 кабелем 4, пропущенным через устройство подачи кабеля 5, подсоединены к блоку преобразования оптического сигнала 6, который соединен с измерительным дисплеем 7.

Эти блоки расположены в центральном зале. Видеоробот 2 устанавливается посредством зацепного устройства 8 крана на загрузочную платформу 9 через трубу парогазовой системы 10 кольцевого экран отражателя 11. На фиг.1 контролируемое ТСТ обозначено цифрой 12, а контролируемый размер ТСТ - 13. Объект измерения показан на фиг.2, где 13 - контролируемый размер ТСТ, 14 - нижний тракт, 15 - верхний тракт телескопического соединения трактов, 16 - торец нижнего тракта ТСТ.

Способ осуществляется следующим образом: видеоробот 2 фиг.1, управляемый по кабелю 4 и радиоканалу, позиционируют, в период нахождения между рядами трактов, последовательно на наружной поверхности трактов в верхней зоне контролируемого телескопического соединения 12 и контролируют размер 13. Проводится процедура видеоизмерительного контроля остаточного перекрытия ТСТ последовательно для каждого тракта двух соседних рядов трактов с регистрацией координат ячеек путем измерения расстояния от торца нижнего тракта 16 до начала конусного перехода верхнего тракта 17. Проводится перемещение системы на два шага (через две ячейки) и повторяется процедура измерения следующих двух соседних рядов трактов.

Затем путем подстановки измеренных данных определяют величины остаточных телескопических перекрытий трактов и проводят оценку их ресурса по зависимости:

где Ап = 225 мм - проектное значение величины перекрытия телескопического соединения трактов;

А - остаточная величина перекрытия телескопического соединения трактов (мм);

Вп = 320 мм - проектное значение расстояния от торца нижнего тракта до начала конусного перехода верхнего тракта;

В - измеренное расстояние от торца нижнего тракта до начала конусного перехода верхнего тракта (мм);

τ - остаточный ресурс телескопического соединения трактов (годы);

7 - максимальная годовая величина уменьшения телескопического соединения трактов (мм).

Способ оценки остаточного ресурса телескопических соединений трактов топливных ячеек ядерного канального реактора путем измерения величины остаточного перекрытия каждого телескопического соединения и сравнения с предельно допустимой величиной, отличающийся тем, что в качестве измерительного средства используют видеоробот, соединенный с блоком преобразователем оптического сигнала, имеющий возможность перемещаться по кольцевому экрану бокового отражателя активной зоны реактора, и при этом видеоробот в период нахождения между рядами трактов последовательно позиционируют на наружной поверхности трактов в верхней зоне телескопических соединений, затем изображение зоны наблюдения переносят на масштабирующий экран монитора и производят измерение на экране расстояния от торца нижнего тракта до начала конусного перехода верхнего тракта, а величины остаточных телескопических перекрытий каждого телескопического соединения трактов и оценку их ресурса определяют по зависимости


где Ап = 225 мм - проектное значение величины перекрытия телескопического соединения трактов;
А - остаточная величина перекрытия телескопического соединения трактов (мм);
Вп = 320 мм - проектное значение расстояния от торца нижнего тракта до начала конусного перехода верхнего тракта;
В - измеренное расстояние от торца нижнего тракта до начала конусного перехода верхнего тракта (мм);
τ - остаточный ресурс телескопического соединения трактов (годы);
7 - максимальная годовая величина уменьшения телескопического соединения трактов (мм).



 

Похожие патенты:

Изобретение относится к способу изготовления тепловыделяющего элемента (твэл) ядерного реактора и может найти применение в ядерной технике. .

Изобретение относится к способу контактно-стыковой сварки трубы с заглушкой и может найти применение при изготовлении стержневых тепловыделяющих элементов ядерных установок.

Изобретение относится к технике эксплуатации ядерных реакторов, в частности относится к восстановлению работоспособности телескопического соединения тракта топливной ячейки ядерного уран-графитового реактора, и предназначено для использования при проведении ремонтов.
Изобретение относится к технологии изготовления тепловыделяющих элементов (твэлов) и используется в ядерной технике. .

Изобретение относится к области ядерной энергетики и может быть использовано для получения ядерного топлива высокого выгорания на основе диоксида урана. .
Изобретение относится к атомной энергетике и может найти применение на предприятиях по изготовлению оболочек для тепловыделяющих элементов энергетических ядерных реакторов типа ВВЭР.

Изобретение относится к атомной промышленности и может найти применение при изготовлении таблетированного топлива из диоксида урана UO2 для тепловыделяющих элементов (ТВЭЛ) ядерных реакторов.

Изобретение относится к области ядерной технологии изготовления тепловыделяющих сборок (ТВС) для ядерного реактора, преимущественно, водо-водяного энергетического реактора типа ВВЭР-1000.

Изобретение относится к атомной энергетике и может найти применение на предприятиях по изготовлению тепловыделяющих сборок (ТВС) для ядерного реактора, в частности при проведении ремонтных операций дистанционирующих решеток (ДР) ТВС.

Изобретение относится к сварке, в частности способу герметизации тепловыделяющих элементов (ТВЭЛ) ядерного реактора контактно-стыковой сваркой и может быть использовано в атомной энергетике.

Изобретение относится к технике эксплуатации ядерных реакторов, в частности относится к восстановлению работоспособности телескопического соединения тракта топливной ячейки ядерного уран-графитового реактора, и предназначено для использования при проведении ремонтов.

Изобретение относится к энергетическим реакторам на быстрых нейтронах с активной зоной в виде солевого расплава. .

Изобретение относится к ядерным паропроизводящим установкам с преимущественным использованием в качестве теплоносителя первого контура жидкометаллического теплоносителя.

Изобретение относится к ядерным перепроизводящим установкам с преимущественным использованием в качестве теплоносителя первого контура жидкометаллического теплоносителя.

Изобретение относится к ядерной технике, а более конкретно к способу автоматического управления ядерной реакцией подкритического ядерного реактора. .

Изобретение относится к ядерной установке с защитной оболочкой, к которой присоединен трубопровод сброса давления. .

Изобретение относится к ядерной энергетике, в частности к реакторам с насыпной активной зоной. .

Изобретение относится к способам комплексного контроля качества МОХ (mixed oxide)-топливных стержней и устройства для осуществления этого способа. .

Изобретение относится к области ядерной энергетики, в частности к высокотемпературным ядерным реакторам, охлаждаемым твердым мелкодисперсным теплоносителем. .

Изобретение относится к области ядерной энергетики, в частности к активным зонам высокотемпературных ядерных реакторов на тепловых нейтронах с твердым мелкодисперсным теплоносителем.

Изобретение относится к ядерной технике, в частности к конструкциям тепловыделяющих элементов (твэлов) и набранных из них рабочих кассет (РК), используемых в водо-водяных ядерных энергетических реакторах тепловой мощностью от 1150 МВт до 1700 МВт
Наверх