Способ измерения расхода двухфазной трехкомпонентной среды

Изобретение может быть использовано для измерения расхода двухфазного потока нефти, воды и газа. Скважину исследуют на нескольких (не менее трех) установившихся технологических режимах ее работы. При режиме работы с повышенным забойным давлением отбирают пробу нефти глубинным пробоотборником при забойном давлении выше давления насыщения. Пробу пластовой воды (или смеси пластовой воды с закачанной) отбирают с нижней части эксплуатационного забоя при остановленной скважине после разделения воды и нефти на забое. В процессе исследования скважины определяют рабочий интервал давлений и температур контролируемого объема потока. Используя отобранные в процессе исследования скважины пробы нефти и воды, лабораторным способом определяют время прохождения импульсов в нефти и воде в рабочем интервале давлений и температур контролируемого объема потока. Определяют давление и температуру контролируемого объема при замере расхода нефтегазоводяного потока. При расчете расхода нефти и воды время прохождения акустических импульсов в нефти и воде определяют при давлении и температуре контролируемого объема потока. Изобретение обеспечивает повышение точности при измерении газожидкостного потока.

 

Предлагаемое изобретение имеет отношение к измерению без разделения фаз двухфазного потока текущих сред, например нефти, воды и газа, протекающих в трубопроводе.

Известен способ измерения расхода компонентов двухфазного многокомпонентного потока [Кремлевский П.П. Расходомеры и счетчики количества вещества. - С.-Петербург: Изд-во «Политехника», 2002 - с.246-247]. Поток представляет собой жидкую фазу (нефть и вода), в которую включены газовые пузырьки. При этом перемещение фаз внутри трубопровода происходит с разными скоростями Vж и Vг соответственно. Поток облучают импульсами энергии от источника, расположенного снаружи трубопровода. В качестве источника энергии используют ультразвуковой преобразователь или гамма-источник. Регистрацию прошедших через среду импульсов осуществляют с помощью приемника излучения, находящегося напротив источника.

Расход компонентов определяют на основе закономерностей движения двухфазной трехкомпонентной среды.

Однако известный способ имеет существенные недостатки. Так как источник и приемник расположены с наружной стороны трубопровода на значительном удалении друг от друга, то возникает дополнительное затухание ультразвукового излучения, что приводит к снижению чувствительности, а следовательно, увеличивает ошибки при измерении расхода. Кроме того, в отдельных случаях, например при большом затухании, даже не позволяет принимать измеряемые импульсы, и соответственно провести измерение.

Применение гамма-излучателя ограничено в связи с его потенциальной опасностью, что приводит к его ограниченному применению на практике.

Наиболее близким к изобретению является способ измерения расхода компонентов многофазной среды в виде жидкой фазы из нефти и воды с газовыми включениями, включающий зондирование потока акустическими импульсами, регистрацию прошедших через среду импульсов приемником в ограниченном контролируемом объеме потока, образованном парой «источник излучения - приемник», фиксируют время прохождения импульсов через контролируемый объем и вычисляют расход компонентов на основе закономерностей движения двухфазной трехкомпонентной среды [Пат. РФ №2138023. Способ определения расхода компонентов многофазной среды // Мельников В.И., Дробков В.П. - 1999.09.20].

Однако способ по прототипу приводит к существенным ошибкам при определении расхода компонентов двухфазной среды из-за неучета влияния растворенного в нефти и воде газа при давлениях и температурах в измеряемом потоке. Давление и температура в измеряемом потоке могут существенно изменяться при различных технологических режимах работы скважины, от количества закачанной воды в зону дренирования скважины, от давления на устьях нагнетательных скважин, работа которых влияет на эксплуатацию скважины, дебит которой измеряется.

Техническим результатом изобретения является повышение точности при измерении расхода газожидкостного потока.

Поставленный технический результат достигается тем, что в способе измерения расхода двухфазной трехкомпонентной среды, включающем зондирование потока акустическими импульсами, регистрацию прошедших через среду импульсов приемником в ограниченном контролируемом объеме потока, образованном парой «источник излучения - приемник», фиксирование времени прохождения импульсов через контролируемый объем и последующую обработку результатов, скважину исследуют на нескольких (не менее трех) установившихся технологических режимах ее работы, отбирают пробы нефти и воды с забоя исследуемой скважины глубинными пробоотборниками, определяют рабочий интервал давлений и температур контролируемого объема потока, определяют лабораторным способом время прохождения импульсов в насыщенных газом нефти и воде в рабочем интервале давлений и температур контролируемого объема потока, определяют давление и температуру контролируемого объема и при расчетах расходов нефти и воды время прохождения акустических импульсов в нефти и воде определяют при давлении и температуре контролируемого объема.

Сравнение заявляемого решения с прототипом позволило выявить в них признаки, отличающие заявляемое решение от прототипа.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ измерения расхода двухфазной трехкомпонентной среды отличается тем, что в нем учитывается влияние растворенного газа в нефти и воде при различных значениях давления и температуры на время прохождения акустической волны, что позволяет производить замеры с меньшей погрешностью при изменении давления и температуры контролируемого объема потока в процессе длительной эксплуатации скважины.

Способ осуществляется следующим образом.

Во время исследования скважины отбирают пробы нефти и воды с забоя исследуемой скважины глубинным пробоотборником. Полученная проба сохраняется при давлении, соответствующем давлению на забое, и попутный газ остается растворенным в нефти и воде.

Скважину исследуют в месте установки измерительных приборов не менее чем на трех режимах. При этом фиксируют давление и температуру.

Пробу нефти и воды, отобранную глубинным пробоотборником, подвергают лабораторным исследованиям. Во время этих исследований пробу разделяют на нефть и воду. После этого в пробах нефти и воды изменяют давление и температуру при тех значениях, которые зафиксированы при исследовании скважины. При этом обеспечивают условие, что количество растворенного газа в нефти и воде соответствует равновесному состоянию при требуемых давлении и температуре. При изменении давления и температуры изменяется растворимость попутных газов в нефти и воде и происходит частичная дегазация. Соответственно при изменении доли растворенного газа изменяются скорости звука в нефти и воде. Кроме того, скорости звука зависят от температуры и давления. Во время лабораторных исследований пробы определяют время прохождения акустических импульсов через нефть и воду. Замеры времени прохождения акустических импульсов повторяют при всех, не менее трех, режимах. Полученные замеры обрабатывают и регрессионными методами получают зависимости времени прохождения акустических импульсов через нефть и воду от давления и температуры с учетом количества растворенного газа.

На основании полученных во время исследований зависимостей скорости звука в нефти от давления, температуры, замеренной температуры и давления определяем скорость звука в нефти. То же самое повторяем для воды.

На основании времени прохождения акустических импульсов и скорости звука в нефти с растворенным попутным газом, скорости звука в воде определяют обводненность, то есть содержание воды в смеси жидкостей в соответствии с известными методами (Дробков В.П. Разработка и исследование ультразвуковых методов и информационно-измерительной системы измерения расхода нефтеводогазового потока. Автореферат диссертации на соискание ученой степени доктора технических наук. М., подписано в печать 20.04.2007 г., с.19) [Пат. РФ №2138023. Способ определения расхода компонентов многофазной среды // Мельников В.И., Дробков В.П. - 1999.09.20].

В отличие от известных способов в предлагаемом способе исключаются погрешности, вызванные изменением скорости звука в нефти и воде, связанные с изменением доли растворенного газа при изменении давления и температуры.

На основании времени прохождения акустических импульсов определяют расход жидкости по любому из известных способов:

1. Киясбейли А.Ш. и др. Частотно-временные ультразвуковые расходомеры и счетчики. - М:. Машиностроение, 1984, глава 3 Временные схемы, стр.14;

2. Кремлевский П.П. Расходомеры и счетчики количества: Справочник, Кн.2 / Под общ. ред. Е.А.Шорникова. - 5е изд., перераб. и доп. - СПб.: Политехника, 2004, глава 16.8 Времяимпульсные расходомеры, с.356.

Определенная на предыдущем этапе по результатам исследования реальная скорость звука в среде используется для определения расходов жидкости, что обеспечивает большую точность измерения.

Одновременно с этим при зондировании потока акустическими импульсами имеется возможность определения газосодержания путем определения доли времени, когда акустические импульсы не проходят через исследуемую среду любым из известных способов, например: патент РФ №2138023. По полученным расходу жидкости, обводненности и газосодержанию определяем расходы нефти и воды.

Способ измерения расхода двухфазной трехкомпонентной среды, включающий зондирование потока акустическими импульсами, регистрацию прошедших через среду импульсов приемником в ограниченном контролируемом объеме потока, образованном парой «источник излучения - приемник», фиксирование времени прохождения импульсов через контролируемый объем и последующую обработку результатов, отличающийся тем, что скважину исследуют на нескольких, не менее трех, установившихся режимах ее работы, отбирают пробы нефти и воды с забоя исследуемой скважины глубинными пробоотборниками, определяют рабочий интервал давлений и температур контролируемого объема потока, определяют лабораторным способом время прохождения импульсов в насыщенных газом нефти и воде в рабочем интервале давлений и температур контролируемого объема потока, определяют давление и температуру контролируемого объема потока и при расчетах расходов нефти и воды время прохождения акустических импульсов в нефти и воде определяют при давлении и температуре контролируемого объема потока.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности и предназначено для анализа нефтяных и газовых составов для многофазного флюида. .

Изобретение относится к встроенному в трубопровод измерительному устройству, имеющему измерительный преобразователь вибрационного типа, в частности к кориолисову устройству, измеряющему массовый расход / плотность среды, особенно двух- или более фазной среды, протекающей в трубопроводе, а также к способу получения с помощью такого вибрационного измерительного преобразователя измеренного значения, представляющего физический параметр измеряемой среды, например массовый расход, плотность и/или вязкость.

Изобретение относится к способу определения объемного или весового расхода среды в трубопроводе или в измерительной трубе посредством способа захвата звука. .

Изобретение относится к измерительной технике и может быть использовано для измерения скорости потока жидких и газообразных сред ультразвуковым методом. .

Изобретение относится к устройству для определения и/или контроля проточного расхода объема и/или массы измеряемой среды, которая протекает через трубопровод с заданным с внутренним диаметром в заданном направлении потока, по меньшей мере, с двумя ультразвуковыми преобразователями, которые посылают и/или принимают ультразвуковые измерительные сигналы вдоль определенной звуковой дорожки, и с блоком регулировки и оценки результатов, который определяет проточный расход объема и/или массы измеряемой среды в резервуаре на основании ультразвуковых измерительных сигналов, согласно принципу разности времени распространения.

Изобретение относится к измерительной технике и может быть использовано в измерительных устройствах для измерения расхода жидкости с помощью ультразвука. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений массового расхода жидкостей, транспортируемых по нефтепроводу. .

Изобретение относится к способам измерения расхода текучих сред, в частности с использованием времени прохождения двух акустических сигналов, передаваемых в противоположных направлениях между двумя точками потока текучей среды.

Изобретение относится к области измерительной техники. .

Изобретение относится к встроенному в трубопровод измерительному устройству, имеющему измерительный преобразователь вибрационного типа, в частности к кориолисову устройству, измеряющему массовый расход / плотность среды, особенно двух- или более фазной среды, протекающей в трубопроводе, а также к способу получения с помощью такого вибрационного измерительного преобразователя измеренного значения, представляющего физический параметр измеряемой среды, например массовый расход, плотность и/или вязкость.
Наверх