Приемник лазерного излучения

Изобретение относится к измерительной технике и может быть использовано для измерений энергии оптических импульсов. Приемник содержит установленные в корпусе последовательно с воздушным зазором прозрачное для принимаемого излучения входное окно и фотоэлектрический преобразователь, выполненный в виде пленки из материала с металлической или полуметаллической проводимостью на внутренней или внешней конической поверхности диэлектрического основания с углом при вершине конуса в пределах от 60 до 90°. При этом пленка снабжена двумя металлическими электродами, один из которых находится в вершине конуса, а второй в виде кольца - в основании конуса и к которым присоединены проводники. Изобретение позволяет увеличить эффективность преобразования энергии оптического импульса приемником в электрический сигнал. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерений энергии оптических импульсов.

Известен приемник лазерного излучения [Карабутов А.А., Каптильный А.Г., Агранат М.Б., Савельев В.В. Приемник лазерного излучения. // Патент РФ на изобретение №2295117, МПК G01J 5/58 (2006.01), Бюл. №31, 10.03.2007], содержащий установленные последовательно в механическом контакте прозрачную для принимаемого излучения плоскопараллельную пластину, поглотитель излучения и акустический датчик, с обеих поверхностей которого выполнены электроды. В этом приемнике прозрачная пластина является входным окном, а поглотитель излучения и акустический датчик выполняют роль фотоэлектрического преобразователя.

Недостатком данного приемника является то, что в нем преобразование энергии лазерного излучения в выходной сигнал происходит сложным путем, в результате которого потери энергии неизбежны.

Наиболее близким по конструкции является описанный приемник лазерного излучения, содержащий в качестве фотоэлектрического преобразователя пироэлектрический преобразователь конусообразной формы [Ишанин Г.Г. Приемники излучения оптических и оптико-электронных приборов. - Л.: Машиностроение, 1986. 175 с.].

Однако его недостатком является большая инерционность (~100 нс), что не позволяет регистрировать короткие импульсы лазерного излучения и отслеживать форму и длительность импульса.

Задачей изобретения является создание быстродействующего приемника лазерного излучения с эффективным преобразованием энергии оптического импульса в электрический сигнал.

Поставленная задача решается тем, что в приемнике лазерного излучения в качестве фотоэлектрического преобразователя используется пленка из материала с металлической проводимостью, выполненная на внутренней или внешней конической поверхности диэлектрического основания с углом при вершине конуса в пределах от 60 до 90°, при этом пленка снабжена двумя металлическими электродами, один из которых находится в вершине конуса, а второй в виде кольца - в основании конуса и к которым присоединены проводники.

Техническим результатом является увеличение эффективности приемника за счет прямого преобразования энергии оптического импульса в электрическую энергию.

На фигуре 1 изображен приемник лазерного излучения в разрезе (на фигуре 2 - вариант исполнения), где цифрами обозначены: 1 - корпус, 2 - входное окно, 3 - пленка, 4 - диэлектрическое основание с конической поверхностью, 5 - электроды, 6 - проводники.

Размеры фотоэлектрического преобразователя приемника определяются диаметром D пучка измеряемых импульсов лазера - диаметр основания конуса не должен превышать диаметр пучка, а его высота составляет от 0,5D до 0,9D в зависимости от материала пленки. Толщина материала проводящей пленки должна быть порядка глубины скин-слоя, определяемого проводимостью материала пленки и частотой лазерного излучения.

В качестве материала проводящей пленки могут служить металлы - золото, серебро, медь, алюминий, никель и т.д.

Возможно исполнение приемника, отличающегося тем, что фотоэлектрический преобразователь выполнен в виде пленки из материала, являющегося по проводимости полуметаллом, например из графита или висмута, в котором длина свободного пробега электронов больше чем в металлах.

Приемник представляет собой преобразователь энергии импульса лазерного излучения в электрический сигнал и работает следующим образом. Пучок импульса лазерного излучения подают на приемник, при этом импульс лазера через установленное в корпусе 1 прозрачное для принимаемого излучения входное окно 2 направляется к фотоэлектрическому преобразователю, выполненному в виде пленки 3 из материала с металлической проводимостью на конической поверхности диэлектрического основания 4 с углом при вершине конуса в пределах от 60 до 90°. Воздействие импульса лазера на поверхность пленки вызывает быстрый разогрев электронного газа в скин-слое проводящей пленки, вследствие которого электроны получают дополнительный импульс направленного движения и создают импульсный электрический ток в пленке. При этом на электродах 5 возникает ЭДС, обусловленная электрическим сопротивлением поверхности пленки. Возбуждаемый при этом электрический сигнал на электродах посредством проводников 6 может подаваться на регистрирующее устройство, например осциллограф. Величина электрического сигнала приемника оказывается пропорциональной интенсивности излучения, что позволяет оценить энергию принимаемого импульса лазерного излучения исходя из его длительности и сечения пучка.

Возникновение фотоэлектрического сигнала на поверхности проводящих пленок при воздействии импульсами лазера обусловлено эффектом увлечения электронов светом [Берегулин Е.В., Валов П.М., Рывкин С.М. и др. Эффект увлечения электронов светом в полуметаллах. // Письма в ЖЭТФ, 1977, т.25, вып.2, с.113-116] - взаимодействием электронов в скин-слое пленок с фотонами падающего пучка лазера, в результате которого в пленке возникает поверхностный ток, а на участке поверхности пленки - ЭДС [Александров В.А. Скин-эффект в проводящих пленках при лазерном воздействии. // Альтернативная энергетика и экология, 2007, №11, с.110-113].

Так, при взаимодействии электрона в скин-слое пленки с фотоном - обратном рассеянии фотона импульс электрона отдачи составит ре=2ħω/с и электрон приобретает дополнительную скорость в направлении вдоль поверхности пленки

где mе- масса электрона, α - угол падения пучка лазера на поверхность пленки.

Движущиеся электроны создают поверхностный ток, плотность которого

где е - заряд электрона, nе - количество взаимодействующих с фотонами электронов в единице объема скин-слоя пленки.

Объем Vd скин-слоя, в котором происходит взаимодействие фотонов с электронами, равен произведению глубины d скин-слоя и площади облучаемой пучком лазера поверхности пленки, определяемой сечением Sb пучка и углом его падения α:

Импульс лазера обычно имеет огибающую и поэтому интенсивность I фотонов пучка такого импульса зависит от времени I=I(t). При наносекундных длительностях импульса лазера количество фотонов в единице объема скин-слоя образца можно выразить как

Учитывая коэффициент электрон-фотонного взаимодействия материала пленки кe={nе/nf)/сτ и подвижность электронов µ=τe/me, где τ - время между их столкновениями, выражение (2) для плотности продольного тока в скин-слое пленки можно привести к виду

Возникновение переменного ЭДС Uх(t) на участке Δх облучаемой импульсом лазера части поверхности пленки обусловлено продольным током jx(t) в скин-слое пленки и проводимостью σ этого участка Ux(t)=jx(t)Δx/σ, поэтому зависимость сигнала фотоэлектрического эффекта от угла α получается аналогичной (5):

Последнее выражение указывает, что максимальное значение фотоэлектрического сигнала на поверхности пленки получается при воздействии пучком лазера, когда угол падения равен α=±π/4. Практически необходимо учитывать преломление пучка лазера в скин-слое материала пленки и максимальное значение величины фотоэлектрического сигнала следует ожидать при углах падения пучка лазера 45-60°.

Одним из способов воздействия пучка лазера на поверхность пленки под требуемым углом является выполнение пленки конусообразной формы.

Приемник лазерного излучения, содержащий установленные в корпусе последовательно с воздушным зазором прозрачное для принимаемого излучения входное окно и фотоэлектрический преобразователь, отличающийся тем, что фотоэлектрический преобразователь выполнен в виде пленки из материала с металлической или полуметаллической проводимостью на внутренней или внешней конической поверхности диэлектрического основания с углом при вершине конуса в пределах от 60 до 90°, при этом пленка снабжена двумя металлическими электродами, один из которых находится в вершине конуса, а второй в виде кольца - в основании конуса, и к которым присоединены проводники.



 

Похожие патенты:

Изобретение относится к измерительной технике. .

Изобретение относится к технике оптических измерений. .

Пирометр // 2270984
Изобретение относится к измерительной технике. .

Пирометр // 2225600
Изобретение относится к информационно-измерительной и вычислительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике, а именно к энергетической фотометрии, и может найти применение при разработке, производстве и эксплуатации сверхъярких источников излучения - мощных электрических дуг, лазеров.

Изобретение относится к технике измерения интенсивности электромагнитного излучения, в частности к технике измерения на основе поглощения электромагнитной энергии и объемного расширения твердых тел.

Изобретение относится к физической оптике и может быть использовано для измерения температуры поверхности пластин монокристаллов, в частности монокристаллического кремния.

Изобретение относится к оптическому приборостроению

Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок. Согласно заявленному способу при спектрометрическом измерении средней температуры слоя газа заданной толщины, содержащего поглотитель, измеряют спектр излучения от слоя газа заданной толщины. Парциальное давление поглотителя измеряют по меньшей мере в двух сечениях слоя газа заданной толщины в направлении линии измерения спектра излучения. По усредненному значению парциального давления судят о распределении поглотителя в слое газа заданной толщины. Вычисляют зависимость волнового числа поглотителя W в слое газа заданной толщины от температуры газа W=f(T). Среднюю температуру слоя газа заданной толщины определяют по точке пересечения линии, отображающей зависимость волнового числа поглотителя в слое газа заданной толщины от температуры газа в системе координат mV и Т, с линией, полученной по результатам измерения спектра излучения от слоя газа заданной толщины в системе координат mV и Т. Технический результат - повышение точности определения средней температуры слоя газа заданной толщины. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения в двух вариантах исполнения. В первом варианте приемник-преобразователь выполнен в виде трех взаимно перпендикулярных круговых панелей с точкой пересечения, совпадающей с их геометрическими центрами; каждая круговая панель с двух сторон представляет приемную плоскость, на которой установлены фотоэлектрические преобразователи. Тыльные контакты фотоэлектрических преобразователей охлаждаются радиальными прямолинейными, дугообразными и периферийными дугообразными тепловыми трубами. Второй вариант отличается от первого конструкцией тепловых труб: применяются V-образные и дугообразные тепловые трубы. Техническим результатом является повышение мощности и эффективности приемника-преобразователя, повышение КПД преобразования, надежности и ресурса работы. 2 н.п. ф-лы, 19 ил.

Изобретение относится к области океанологии и может быть использовано для получения полей температуры океана в оперативном режиме. Заявлен способ оценки температуры поверхности океана по измерениям спутниковых микроволновых радиометров путем получения значений радиояркостных температур (Тя) по радиометрическим каналам и вычисления значения температуры поверхности океана (Ts) с использованием зависимости, учитывающей значение радиояркостных температур и коэффициентов настроенной Нейронной Сети. Используются четыре радиометрических канала, которые имеют следующие частоты и поляризационные режимы: υ1=6.9 ГГц горизонтальной поляризации, υ2=6.9 ГГц вертикальной поляризации, υ3=10.65 ГГц горизонтальной поляризации и υ4=10.65 ГГц вертикальной поляризации. Моделируется ослабление излучения слоем осадков до 30 мм/ч, что позволяет получать оценки температуры поверхности океана в широком диапазоне состояний океана и атмосферы для всего диапазона температур океана в условиях, включающих наличие мощной облачности и осадков до 30 мм/ч. Технический результат - повышение точности и достоверности получаемых данных.

Изобретение относится к области дистанционного измерения температур и касается способа измерения температуры потока газа с поглотителем. Измерение температуры проводят в, по крайней мере, трех слоях заданной толщины. При осуществлении способа производят юстировку оптической системы для одного из средних слоев газа. Измеряют парциальное давление в каждом слое газа и определяют содержание поглотителя в потоке газа. Перемещают источник излучения вдоль линии визирования и измеряют величину изменения сигнала в зависимости от расфокусировки оптической системы. Определяют для каждого слоя газа характеристику спектра излучения потока газа. Определяют величину изменения сигнала источника излучения при прохождении его к приемнику излучения через поток газа. По полученным величинам изменения сигнала вычисляют поправочный коэффициент для каждого слоя газа. Для каждого слоя газа вычисляют зависимость значений волнового числа поглотителя от температуры газа. Температуру в каждом слое определяют с учетом поправочного коэффициента по точке пересечения линии, отображающей зависимость волнового числа поглотителя в этом слое от температуры газа с линией, полученной по результатам измерения спектра излучения, соответствующего этому слою газа. Технический результат заключается в обеспечении возможности получения информации о распределении температуры по всему сечению потока газа. 6 ил.

Изобретение относится к области метеорологии и может быть использовано для оценки интенсивности дождя над территориями океана, свободными ото льда. Сущность: получают значения радиояркостных температур по четырем радиометрическим каналам, имеющим частоты 6.9 ГГц горизонтальной поляризации и 6.9 ГГц вертикальной поляризации, 7.3 ГГц горизонтальной поляризации и 7.3 ГГц вертикальной поляризации, 10.65 ГГц горизонтальной поляризации и 10.65 ГГц вертикальной поляризации. Вычисляют интенсивность дождя с использованием зависимости, учитывающей разницу радиояркостных температур и коэффициенты настроенной Нейронной Сети. При этом численные значения упомянутых коэффициентов получают математическим моделированием уходящего излучения системы Океан - Атмосфера в условиях осадков и проведением численного эксперимента с использованием Нейронных Сетей в качестве оператора решения обратной задачи. Причем при моделировании излучения применяют уточненные модели ослабления микроволнового излучения молекулярными газами и жидкокапельной влагой в облаках и осадках, а также новую параметризацию излучения океана. Технический результат: повышение точности оценки, расширение диапазона условий применения.

Изобретение относится к области измерительной техники и касается фотоприемника для регистрации инфракрасного излучения в области 10,6 мкм. Фотоприемник включает в себя герметичную наполненную газом камеру, оснащенную входным окном, прозрачным для измеряемого излучения, и блок электроники. Внутри камеры, представляющей собой полый параллелепипед, на месте двух ее противоположных граней, вдоль которых распространяется измеряемое излучение, установлены соединенные с блоком электроники идентичные электроакустические преобразователи. Камера заполнена газовой смесью азот-элегаз общим давлением 1 атм и с относительной концентрацией элегаза , где - расстояние между входным окном и противоположной гранью камеры. Технический результат заключается в повышении чувствительности устройства. 1 ил.

Изобретение относится к области измерительной техники и касается способа измерения энергии излучения инфракрасного и терагерцового диапазонов. Способ включает в себя введение излучения в герметичную камеру, заполненную газом, и измерение величины нагрева газа, обусловленного поглощением излучения внутри камеры, посредством измерения скоростей прохождения акустических импульсов сквозь газ, на основании которой определяют искомую величину энергии излучения. Поглощение излучения осуществляется поглощающей пленкой, установленной внутри камеры, а в качестве газа для наполнения камеры используется ксенон. Технический результат заключается в повышении точности измерений. 1 ил.
Наверх