Жаропрочный литейный сплав на основе никеля

Изобретение относится к области металлургии, а именно к жаропрочным литейным сплавам на основе никеля, используемым для изготовления высоконагруженных деталей, например лопаток газовых турбин, работающих при температурах свыше 1000°С, методами направленной кристаллизации и монокристаллического литья. Сплав содержит, мас.%: хром до 3,0, кобальт до 5,0, вольфрам 8,0-12,0, алюминий 4,3-5,6, тантал 9,0-13,0, рений 4,0-6,0, углерод 0,002-0,05, иттрий 0,003-0,1, лантан 0,001-0,2, церий 0,003-0,1, неодим до 0,01, скандий 0,05-0,1, кремний 0,05-1,0, магний 0,01-0,15, никель - остальное. Повышается высокотемпературная прочность и жаростойкость сплава. 2 табл.

 

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, используемым для изготовления высоконагруженных деталей, например лопаток газовых турбин, работающих при температурах свыше 1000°С, методами направленной кристаллизации и монокристаллического литья.

Известен жаропрочный сплав для монокристаллического литья на основе никеля, содержащий следующие компоненты, мас.%: хром 2,1 - 3,3, кобальт 5,0 - 7,0, молибден 3,5 - 5,0, вольфрам 3,2 - 4,8, тантал 4,0 - 5,0, рений 5,6 - 7,0, рутений 2,0 - 6,0, алюминий 5,7 - 6,3, углерод 0,002 - 0,02, бор 0,0004 - 0,004, иттрий 0,002 - 0,2, церий 0,001 - 0,02, лантан 0,002 - 0,25, неодим 0,0005 - 0,01, никель - остальное (патент RU N22293782, МПК С22С 19/05, опубл. в 2007 г.).

Указанный сплав обладает достаточно высоким уровнем длительной прочности и стабилен при работе в условиях высоких температур, однако его недостатком является легирование дорогими и дефицитными элементами, прежде всего рением, а также элементом платиновой группы рутением. Кроме того, у сплавов, предназначенных для работы при температурах свыше 1000°С, стойкость к высокотемпературной газовой коррозии становится одной из важнейших характеристик, определяющих их работоспособность. В связи с этим требуется осуществление дополнительного легирования, направленного на повышение указанной характеристики, поскольку в сплаве-прототипе содержание хрома и кобальта, обеспечивающих защитные свойства материала, снижено.

Задачей изобретения является повышение высокотемпературной прочности и жаростойкости сплава при уменьшении его стоимости.

Указанная задача решается тем, что в известный жаропрочный литейный сплав на основе никеля, содержащий хром, кобальт, вольфрам, алюминий, тантал, рений, углерод, иттрий, лантан, церий и неодим, дополнительно введены скандий, кремний и магний при следующем соотношении компонентов, мас.%:

хром до 3,0
кобальт до 5,0
вольфрам 8,0-12,0
алюминий 4,3-5,6
тантал 9,0-13,0
рений 4,0-6,0
углерод 0,002-0,05
иттрий 0,003-0,1
лантан 0,001-0,2
церий 0,003-0,1
неодим до 0,01
скандий 0,05-0,1
кремний 0,05-1,0
магний 0,01-0,15
никель остальное

В заявленном сплаве увеличено количество тантала и вольфрама, чтобы компенсировать и даже усилить полезное влияние на структуру и свойства рения, содержание которого в сплаве снижено. Кроме того, из заявленного сплава полностью исключен элемент платиновой группы рутений, а также бор.

Химический состав предлагаемого сплава разработан на базе реализации методов интеллектуальной инженерии, включающей оценку следующих факторов: прогнозируемого уровня структурной стабильности, а именно вероятности образования топологически плотноупакованных и карбидных фаз, формирования эвтектических колоний (γ+γ') фаз и фаз с объемно-центрированной кубической решеткой при длительной наработке; кинетики диффузионного огрубления изолированных выделений γ' - фазы в матрице и пластинчатой рафт-структуры в монокристаллах.

В результате проведенного анализа было установлено, что в составе предложенного сплава вероятность образования нежелательных фаз мала и сам состав хорошо сбалансирован.

Значительное повышение качества сплава предложенного состава обеспечивается также дополнительным легированием его магнием, скандием и кремнием.

Введение магния заметно улучшает деформируемость никелевого жаропрочного сплава. Кроме того, оно способствует улучшению процесса распада γ-твердого раствора и образованию более дисперсной γ'-фазы, стабилизации структуры и замедлению процессов коагуляции упрочняющих частиц на базе интерметаллида Ni3Al, снижению диффузионной подвижности и совершенствованию межфазных границ. Поэтому введение магния в состав литейного жаропрочного сплава с направленной и монокристальной структурой обеспечило дополнительное повышение его жаропрочности.

Введение скандия значительно увеличивает жаростойкость предложенного сплава. Кроме того, он повышает технологичность при обработке материала давлением, а также оказывает рафинирующее действие, связывая серу, фосфор и другие вредные примеси.

Введение в состав предлагаемого сплава кремния обеспечивает дополнительное повышение его жаростойкости.

Указанные элементы совместно с лантаном, иттрием, церием и неодимом при концентрации в приведенных пределах оказывают совокупное влияние на жаропрочность и стойкость к высокотемпературному окислению, которые существенно выше суммарного влияния этих элементов.

Для апробации сплава были выплавлены три состава, содержащие компоненты в % по массе, представленные в таблице 1. Предлагаемый сплав выплавляли в вакуумной индукционной печи, а затем переплавляли в печи для направленной кристаллизации с применением затравок с заданной ориентацией. Свойства полученных сплавов приведены в таблице 2.

Сопоставление времен до разрушения известного и предложенного сплавов показывает, что по удельной долговечности σ/d (d - удельный вес сплава) предложенный сплав, по крайней мере, не уступает известному сплаву.

При этом, учитывая, что в его составе присутствуют элементы, обладающие наиболее низкой диффузионной подвижностью при высоких температурах, в процессе эксплуатации предложенного сплава в области температур свыше 1100°С его преимущества по сравнению с прототипом становятся особо значительными.

Предложенный сплав обладает оптимальной структурой - в его составе наблюдается практически незначительное количество эвтектической γ'-фазы, отсутствуют α-фазы на основе вольфрама, рения, хрома, т.е. все введенные в сплав элементы обеспечивают необходимый вклад в увеличение жаропрочности. По сравнению со сплавом-прототипом он обладает более высокой структурной стабильностью - температура полного растворения в нем γ'-фазы составляет 1360-1366°С, в то время как в сплаве-прототипе 1320-1340°С. Стоимость предложенного материала оказывается более чем в два раза ниже стоимости известного сплава в зависимости от выбора конкретных композиций в заявленных диапазонах концентраций легирующих элементов, в его составе отсутствует остродефицитный рутений и снижено содержание рения, что обеспечивает решение задачи производства сплава в необходимом количестве.

Жаропрочный литейный сплав на основе никеля, содержащий хром, кобальт, вольфрам, алюминий, тантал, рений, углерод, иттрий, лантан, церий и неодим, отличающийся тем, что в него дополнительно введены скандий, кремний и магний при следующем соотношении компонентов, мас.%:

хром до 3,0
кобальт до 5,0
вольфрам 8,0-12,0
алюминий 4,3-5,6
тантал 9,0-13,0
рений 4,0-6,0
углерод 0,002-0,05
иттрий 0,003-0,1
лантан 0,001-0,2
церий 0,003-0,1
неодим до 0,01
скандий 0,05-0,1
кремний 0,05-1,0
магний 0,01-0,15
никель остальное


 

Похожие патенты:

Изобретение относится к деформируемому дисперсионно-твердеющему сплаву на основе никеля-хрома-кобальта для компонентов газовых турбин. .
Изобретение относится к сплавам на основе никеля, предназначенным для применения в авиационной, энергетической отраслях промышленности в качестве присадочного материала в сварных конструкциях в виде «лапши» или в виде сварочной проволоки.
Изобретение относится к области металлургии и может быть использовано в авиакосмической отрасли для получения жаропрочного коррозионного сплава на основе никеля для изготовления изделий, работающего в агрессивных средах длительное время при температурах 550-800°С.
Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. .
Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, предназначенным для производства методом направленной кристаллизации монокристаллических рабочих лопаток, а также и других элементов горячего тракта турбин высокотемпературных газовых двигателей, длительно работающих при температурах до 1100°С.

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. .
Изобретение относится к области металлургии и касается составов сплавов, используемых для изготовления штампового инструмента для пластмасс. .
Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во всеклиматических условиях.
Изобретение относится к производству литейных жаропрочных сплавов на основе никеля, предназначенных для производства методом направленной кристаллизации деталей высокотемпературных газовых турбин, в том числе монокристаллических лопаток, длительно работающих при температурах свыше 1000°С.
Изобретение относится к области металлургии, в частности к составам сплавов на основе никеля, которые могут быть использованы для изготовления деталей двигателей. .
Изобретение относится к области металлургии и касается составов сплавов, используемых для изготовления штампового инструмента для пластмасс

Изобретение относится к металлургии конструкционных сталей и сплавов и предназначено для использования при производстве различного теплообменного оборудования стационарных и транспортных реакторов, а также паросиловых и газотурбинных установок, работающих в условиях длительной высокотемпературной эксплуатации
Изобретение относится к металлургии сплавов, а именно к производству никелевых жаропрочных сплавов, используемых для изготовления теплонагруженных деталей, например корпусов газотурбинных двигателей, работающих в условиях высоких температур и напряжений
Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллидов никеля и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток, створки регулируемого сопла и другие детали газотурбинных двигателей авиационной и автомобильной промышленности
Изобретение относится к области металлургии и касается составов сплавов, используемых для изготовления штампового инструмента для пластмасс
Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al, получаемым методом направленной кристаллизации и монокристаллического литья, применяемым для изготовления деталей газотурбинных двигателей, таких как сопловые и рабочие лопатки, блоки сопловых лопаток, сегменты камеры сгорания, форсунки и другие, для авиационной и автомобильной промышленности

Изобретение относится к области металлургии, а именно к никелевым сплавам, пригодный для изготовления из них электродов для элементов зажигания в двигателях внутреннего сгорания

Изобретение относится к металлургии сплавов, в частности к производству жаропрочных сплавов на основе никеля, предназначенных для изготовления методом направленной кристаллизации из них изделий с монокристаллической и направленной структурой, например лопаток газовых турбин, работающих длительно при температурах до 1150°С
Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток, створки регулируемого сопла и другие детали газотурбинных двигателей авиационной и автомобильной промышленности
Наверх