Катод литиевого источника тока

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых источников тока. Согласно изобретению в катоде литиевого источника тока, представляющем собой композицию активной массы, электропроводной добавки и связующего, в качестве связующего используют твердополимерный электролит (ТПЭ), состоящий из полимерной матрицы и неорганической ионогенной соли лития. Техническим результатом изобретения является повышение емкости и снижение саморазряда катодов литиевых источников тока. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых источников тока. Катоды литиевых источников тока являются композиционными материалами: они представляют собой смесь активной массы, электропроводной добавки и связующего. Эти катоды являются пористыми материалами, а их поры при работе литиевых источников тока заполняют раствором жидкого электролита. В качестве активной массы катода в настоящее время широко применяются оксиды металлов [1].

Известен катод, используемый в литиевых источниках тока, который представляет собой композицию из диоксида марганца, сажи и фторопласта, взятых в следующем массовом соотношении - 85:10:5. Для этих композиций удельная электрическая емкость лежит в интервале 150-220 мА·ч/г при 20°С, что значительно ниже его теоретического значения [2]. В качестве связующего вещества в этом катоде используют непроводящий фторопласт, который частично экранирует поверхность активных частиц, делая их недоступными для процесса интеркаляции иона лития, тем самым снижая удельную емкость катода.

Наиболее близким по технической сущности и достигаемым результатам является катод, используемый в литиевых источниках тока, который представляет собой композицию из диоксида марганца, сажи и полипиролла, взятых в следующем массовом соотношении - 85:10:5. Использование в качестве связующего проводящего полимера-полипиролла позволило увеличить емкость до 280 мА·ч/г при 20°С. К недостаткам этого катода следует отнести высокий саморазряд (20% в месяц) из-за деструкции полипиролла, а также коррозионных процессов из-за наличия в порах катода жидкого электролита [3].

Техническая задача, решаемая изобретением, состоит в повышении емкости и снижении саморазряда катодов литиевых источников тока. Поставленная техническая задача достигается тем, что в известном катоде литиевого источника тока, представляющем собой композицию активной массы, электропроводной добавки и связующего, предлагается в качестве связующего использовать твердополимерный электролит (ТПЭ), состоящий из полимерной матрицы и неорганической ионогенной соли лития.

Кроме того, в качестве полимерной матрицы может быть использован полиарилсульфон средней молекулярной массы (0,2-1,0)·105 при следующем массовом соотношении компонентов, мас.ч:

полиарилсульфон - 100, неорганическая соль лития - не более 30.

При таких значениях средней молекулярной массы полимер обладает хорошими пленкообразующими свойствами, что позволяет получить твердополимерный электролит с хорошими механическими свойствами.

Обоснование выбранных интервалов компонентов: уменьшение количества соли менее нижнего предела приводит к неравномерности распределения ее по полимеру и соответственно к ухудшению проводящих свойств;

увеличение количества соли лития более верхнего предела приводит к разрушению структуры полимера и, как следствие, твердополимерный электролит становится гомогенно неоднородным, что также приводит к снижению проводящих свойств.

Катод изготавливают следующим образом. Порошок диоксида марганца MnO2 перемешивают с сажей в соотношении 85:10 и пропитывают 5 (мас.) % раствором твердополимерного электролита в диметилацетамиде. Твердополимерный электролит состоит из перхлората лития и полиарилсульфона при массовом соотношении компонентов: полиарилсульфон - 100, перхлорат лития - 20. Объем раствора выбирают таким образом, чтобы соотношение MnO2:сажа:ТПЭ составляло 85:10:5. Затем полученную смесь высушивают в сушильном шкафу при температуре 100°С в течение часа в вакууме и напрессовывают на контактную часть токоотвода катода. Прессование осуществляют под давлением 10 МПа.

Процесс сушки готового катода проводят в сушильном шкафу при температуре 100°С в течение двух часов в вакууме.

В таблице приведены примеры конкретных составов и свойств заявленных катодов.

Диоксид марганца, мг LiClO4, мг Полимерная матрица, мг Графит, мг Удельная емкость, мА·ч/г Саморазряд, %/год
1 9,00 0,05 0,45 0,50 287 0,5
2 9,00 0,10 0,40 0,50 294 0,5
3 9,00 0,15 0,35 0,50 285 0,5
4 8,50 0,10 0,90 0,50 304 0,5
5 8,50 0,20 0,80 0,50 310 0,5
6 8,50 0,30 0,70 0,50 298 0,5
7 8,00 0,15 1,35 0,50 288 0,5
8 8,00 0,30 1,20 0,50 293 0,5
9 8,00 0,45 1,05 0,50 290 0,5

Предлагаемый катод имеет преимущество по емкости и саморазряду перед существующими аналогами.

Указанный эффект объясняется тем, что в качестве связующего катода и электролита в его порах используется твердополимерный электролит. Таким образом в данном катоде полностью отсутствует жидкая фаза, т.е он является твердофазным композиционным материалом. При использовании электропроводного ТПЭ в качестве связующего компонента экранирования поверхности частиц активного материала не возникает. Кроме того, равномерность распределения ТПЭ в структуре твердофазного электрода по данным растровой электронной микроскопии выше, чем у электродов-прототипов. Как показали эксперименты, по длительным режимам разряда твердофазных катодов и их разряда после хранения ТПЭ в отличие от жидкого электролита является полностью инертным по отношению к материалам положительного электрода. Вследствие чего саморазряд твердофазного катода значительно меньше, чем катода, поры которого заполнены жидким электролитом.

Источники информации

1. Химические источники тока: Справ. / Под ред. Н.В.Коровина и A.M.Скундина. М.: Изд-во МЭИ, 2003. 799 с.

2. Lithium Batteries: Science and Technology / Nazri G.A., Pistoia G., eds. Boston. Kluwer Academic, 2004. 375 р.

3. Gemeay A.H., Nishiyama, Kuwabata S., Yoneyama H. // J. Electrochem. Soc. - 1995. - V.142, N12. - P.4190-4195.

1. Катод литиевого источника тока, представляющий собой композицию активной массы, электропроводной добавки и связующего, отличающийся тем, что в качестве связующего используют твердополимерный электролит, состоящий из полимерной матрицы и неорганической ионогенной соли лития.

2. Катод литиевого источника тока по п.1, отличающийся тем, что в качестве полимерной матрицы используют полиарилсульфон средней молекулярной массы (0,2-1,0)·105 при следующем массовом соотношении компонентов, мас.ч.:
полиарилсульфон 100, неорганическая соль лития не более 30.



 

Похожие патенты:

Изобретение относится к семейству новейших материалов для катода и к уникальному способу их синтеза для Li-ионных батарей. .

Изобретение относится к области электротехники, в частности к композиционным составам, применяемым при формировании электродов химических источников тока. .

Изобретение относится к области электротехники, в частности к электроду, содержащему покровный слой из сшитого полимера, который сформирован на поверхности частиц электродного активного материала при сохранении пористой структуры, образованной частицами электродного активного материала, соединенных одни с другими в данном электроде.

Изобретение относится к абсорбированию (поглощению) и десорбированию лития в электрохимической системе, а более конкретно - к электродам, предназначенным для использования в такой системе, а также к батарее или электрохимическому элементу, включающему в себя электрод.

Изобретение относится к электроду, используемому в качестве анода или катода для вторичной батареи. .

Изобретение относится к электроду, способу его изготовления и электрохимическому устройству с этим электродом. .

Изобретение относится к анодному материалу для литиевого аккумулятора. .

Изобретение относится к области электротехники, в частности к отрицательному электроду для вторичной батареи с неводным электролитом. .

Изобретение относится к области электрохимии, а именно к способам восстановления оксида ниобия, включающим тепловую обработку исходного оксида ниобия в присутствии материала-газопоглотителя в атмосфере, обеспечивающей возможность переноса атомов кислорода из исходного оксида ниобия к материалу-газопоглотителю, в течение достаточного времени и при достаточной температуре для того, чтобы исходный оксид ниобия и указанный материал-газопоглотитель образовали оксид ниобия с пониженным содержанием кислорода.

Изобретение относится к области химических источников тока, а именно к изготовлению электродов литий-ионного аккумулятора. .

Изобретение относится к блоку аккумуляторных батарей, имеющих конструкцию с чередующейся ориентацией. .
Изобретение относится к электротехнической промышленноси, в частности к производству свинцово-кислотных аккумуляторных батарей. .

Изобретение относится к автоматике и измерительной технике и может быть использовано в электротехнической промышленности для контроля качества химических источников тока (ХИТ) при разработке и производстве ХИТ, а также в других отраслях промышленности, производящих автономные системы, использующие химические источники тока, и в сфере реализации ХИТ и эксплуатации автономных систем, использующих ХИТ.

Изобретение относится к перезаряжаемым химическим источникам тока. .

Изобретение относится к пастообразному электролиту, перезаряжаемой литиевой батарее, содержащей пастообразный электролит
Наверх