Способ увеличения полезного объема подземного резервуара, созданного в растворимых породах через буровую скважину

Изобретение относится к сооружению и эксплуатации подземных резервуаров, создаваемых в растворимых породах через буровую скважину, в частности в каменной соли, и может быть использовано в нефтяной, газовой и других отраслях промышленности при подземном хранении сжатого газа, в том числе природного. Изобретение обеспечивает повышение эффективности увеличения полезного объема подземных резервуаров, предназначаемых для хранения сжатого газа. Увеличение полезного объема подземного резервуара достигается в процессе осуществления эксплуатационных циклов. Закачивание газа в подземный резервуар ведут по межтрубному пространству обсадной и внешней подвесной колонн труб скважины с одновременной подачей пресной воды по межтрубному пространству центральной и внешней подвесных колонн труб. Подачу воды в подземный резервуар производят до установления границы раздела газ-рассол на уровне башмака внешней подвесной колонны труб, после чего дальнейшее нагнетание газа в подземный резервуар ведут с извлечением рассола на дневную поверхность по центральной подвесной колонне труб. Отбор хранимого газа производят по межтрубному пространству обсадной и внешней подвесной колонн труб с одновременной подачей воды по центральной подвесной колонне труб до достижения границей раздела газ-рассол проектной отметки кровли подземного резервуара. 5 ил.

 

Предлагаемый способ относится к сооружению и эксплуатации подземных резервуаров, создаваемых в растворимых породах через буровую скважину, в частности в каменной соли, и может быть использован в нефтяной, газовой и других отраслях промышленности при подземном хранении сжатого газа, в том числе природного.

Известен способ сооружения подземного резервуара в каменной соли [1], предусматривающий отработку камеры подземного растворения пород с увеличением ее объема в несколько этапов на сближенном противоточном режиме подачи растворителя (воды). Процесс сооружения подземного резервуара осуществляется в соответствии с технологическим регламентом. Продукт хранения, гелиевый концентрат, закачивают в подземный резервуар по завершении процесса растворения каменной соли, т.е. в окончательно сформировавшуюся подземную полость. Отбор продукта из подземного резервуара осуществляют за счет создавшегося в нем избыточного давления.

Согласно указанному способу увеличение объема подземного резервуара происходит только лишь в процессе формирования камеры подземного растворения. При последующей эксплуатации подземного резервуара объем его остается постоянным, что удорожает сооружение таких объектов.

Известен также способ эксплуатации подземных резервуаров газохранилищ, производимый в процессе сооружения их выработок-емкостей через буровые скважины в растворимых породах [2], согласно которому буровую скважину предварительно оборудуют обсадной и центральной подвесной колоннами труб с установкой башмака центральной подвесной колонны труб на заданном от забоя скважины расстоянии. На определенном этапе формирования подземного резервуара его выработку-емкость заполняют природным газом для последующего хранения. По окончании срока хранения газ отбирают вытеснением водой, подаваемой по центральной подвесной колонне труб скважины в нижнюю часть выработки-емкости. В результате этого в процессе откачивания газа происходит частичное увеличение объема подземного резервуара при каждом очередном вытеснении газа водой.

Недостатком данного способа является возможность увеличения объемов выработок-емкостей только в период отбора газа из подземного резервуара. В период закачивания газа на хранение объемы выработок-емкостей не изменяются.

Известен также способ создания и эксплуатации подземного газохранилища в соленосных породах [3], предусматривающий оборудование буровой скважины обсадной, центральной и внешней подвесными колоннами труб, установку башмака центральной подвесной колонны на заданном расстоянии от забоя скважины, последующие закачивание и хранение газа с его отбором путем вытеснения газа пресной водой, при этом увеличение полезного объема подземного резервуара производят в процессе проведения эксплуатационных циклов, для осуществления которых башмак внешней подвесной колонны труб устанавливают над башмаком центральной подвесной колонны, закачивание газа в подземный резервуар ведут по межтрубному пространству обсадной и внешней подвесной колонн труб скважины, а отбор хранимого газа производят по межтрубному пространству обсадной и внешней подвесной колонн труб с одновременной подачей пресной воды по центральной подвесной колонне труб.

Недостатком данного способа является, прежде всего, возможность его использования в процессе сооружения подземного хранилища, состоящего из нескольких строящихся гидродинамически связанных между собой подземных резервуаров, которые после полного или частичного отбора газа оставляют в режиме естественного растворения соли до получения рассола требуемой концентрации. По достижении проектной вместимости подземных резервуаров дальнейшая их эксплуатация осуществляется по безрассольной схеме, т.е. с закачкой газа компрессорами, а отбор его - под воздействием высокого давления сжатого газа в подземных резервуарах.

Техническая задача, решаемая при разработке предлагаемого способа, заключается в повышении эффективности увеличения полезного объема подземных резервуаров, предназначаемых для хранения сжатого газа.

В результате осуществления этой задачи полезный объем подземного резервуара в процессе его эксплуатации может быть увеличен примерно в 1,5 раза в более короткие сроки по сравнению с традиционными способами сооружения.

Решение указанной задачи достигается при использовании известного способа, предусматривающего оборудование буровой скважины обсадной, центральной и внешней подвесной колоннами труб, установку башмака центральной подвесной колонны труб на заданном расстоянии от забоя скважины, последующие закачивание и хранение газа с его отбором путем вытеснения газа пресной водой, при этом увеличение полезного объема подземного резервуара производят в процессе проведения эксплуатационных циклов, для осуществления которых башмак внешней подвесной колонны труб устанавливают над башмаком центральной подвесной колонны, закачивание газа в подземный резервуар ведут по межтрубному пространству обсадной и внешней подвесной колонн труб скважины, а отбор хранимого газа производят по межтрубному пространству обсадной и внешней подвесной колонн труб с одновременной подачей пресной воды по центральной подвесной колонне труб. Согласно предлагаемому техническому решению приращение полезного объема подземного резервуара осуществляют путем закачивания газа в подземный резервуар с одновременной подачей пресной воды по межтрубному пространству центральной и внешней подвесных колонн труб до установления границы раздела газ-рассол на уровне башмака внешней подвесной колонны труб, после чего дальнейшее закачивание газа в подземный резервуар ведут с извлечением рассола на дневную поверхность по центральной подвесной колонне труб до полного заполнения полезного объема этого резервуара газом, при отборе газа подачу пресной воды в подземный резервуар ведут до достижения границей раздела газ-рассол проектной отметки кровли подземного резервуара.

Подача пресной воды при осуществлении эксплуатационных циклов подземного резервуара, предусматривающих закачивание, хранение и отбор газа потребителю, позволяет вести поэтапное увеличение полезного объема подземного резервуара.

Количество эксплуатационных циклов, осуществляемых с подачей воды в подземный резервуар, прямо пропорционально приращению его полезного объема и рассчитывается с учетом необходимого увеличения полезного объема подземного резервуара.

На фиг.1 представлена общая схема осуществления способа увеличения полезного объема подземного резервуара, созданного в растворимых породах через буровую скважину.

На фиг.2 приведена схема подземного резервуара до начала его эксплуатации.

На фиг.3 показано увеличение полезного объема подземного резервуара по окончании первого эксплуатационного цикла.

На фиг.4 - то же, по окончании второго эксплуатационного цикла.

На фиг.5 - то же, по окончании третьего эксплуатационного цикла.

В соответствии со схемой, представленной на фиг.1, буровую скважину, через которую создан подземный резервуар 1 в каменной соли, предварительно оборудуют обсадной колонной труб 2 и двумя соосно установленными центральной 3 и внешней 4 подвесными колоннами труб. Башмак 5 центральной подвесной колонны труб 3 установлен на заданном от забоя буровой скважины расстоянии. Башмак 6 внешней подвесной колонны труб 4 устанавливают над башмаком 5 центральной подвесной колонны труб 3. Расстояние между башмаками 5 и 6 определяется высотой подземного резервуара 1.

По окончании первого эксплуатационного цикла подземного резервуара 1 создается приращение полезного объема 7, показанное на фиг.3. Завершение второго эксплуатационного цикла сопровождается созданием второго приращения полезного объема 8, изображенного на фиг.4. По окончании третьего (фиг.5) и четвертого (фиг.1) эксплуатационных циклов соответственно достигнуты третье и четвертое приращения полезного объема 9 и 10 подземного резервуара 1.

Способ реализуется в следующей последовательности технологических операций.

В соответствии с общей схемой осуществления способа, представленной на фиг.1, буровую скважину, через которую создан подземный резервуар 1 в растворимых породах, предварительно оборудуют обсадной колонной труб 2, центральной 3 и соосной с ней внешней 4 подвесными колоннами труб. Башмак 5 центральной подвесной колонны труб 3 устанавливают на расстоянии 1-2 м от забоя буровой скважины. Башмак 6 внешней подвесной колонны труб 4 устанавливают над башмаком 5 центральной подвесной колонны труб 3. При этом расстояние между башмаками 5 и 6 составляет 1/5 высоты подземного резервуара 1.

Перед началом эксплуатации подземный резервуар 1 полностью заполнен рассолом (фиг.2), образовавшимся при его сооружении через буровую скважину растворением пород с подачей пресной воды в скважину. Увеличение исходного полезного объема резервуара 1 достигается в процессе проведения эксплуатационных циклов, протекающих с созданием приращений полезного объема 7, 8, 9, 10, показанных на фиг.1, 3, 4, 5. Проведение эксплуатационных циклов предусматривает закачивание сжатого природного газа в подземный резервуар 1 по межтрубному пространству обсадной 2 и внешней подвесной 4 колонн труб с одновременной подачей пресной воды по межтрубному пространству центральной 3 и внешней 4 подвесных колонн труб скважины до установления границы раздела газ-рассол на уровне башмака 6 внешней подвесной колонны труб 4. После этого прекращают подачу пресной воды и продолжают закачивание природного сжатого газа в подземный резервуар 1 с извлечением рассола на дневную поверхность по центральной подвесной колонне труб 3 до полного заполнения свободного пространства подземного резервуара 1 газом.

Отбор хранимого природного газа производят по межтрубному пространству обсадной 2 и внешней подвесной 4 колонн труб с одновременной подачей пресной воды в подземный резервуар 1 по центральной подвесной колонне труб 3 до достижения границей раздела газ-рассол проектной отметки кровли подземного резервуара 1.

Осуществление одного или нескольких последовательных эксплуатационных циклов подземного резервуара 1 с соблюдением указанной технологической последовательности позволяет в итоге увеличить его полезный объем примерно в 1,5 раза (фиг.1). Так, в результате проведения первого эксплуатационного цикла (фиг.3) вышеописанным методом достигают приращение полезного объема 7. При необходимости большего увеличения полезного объема подземного газохранилища 1 осуществляют второй эксплуатационный цикл с достижением второго приращения полезного объема 8, изображенного на фиг.4. Проведение последующих эксплуатационных циклов подземного газохранилища 1, например третьего и четвертого, обеспечивает соответствующие дополнительные приращения полезного объема 9 (фиг.5) и 10 (фиг.1). В общем виде последовательное увеличение полезного объема подземного газохранилища 1 представлено на фиг.1 в виде отдельных приращений полезного объема 7, 8, 9, 10, создаваемых при осуществлении четырех эксплуатационных циклов.

По достижении необходимого увеличения объема подземного резервуара 1 его дальнейшую эксплуатацию осуществляют известным методом по безрассольной схеме.

Количество эксплуатационных циклов, производимых при одновременной подаче воды в процессах закачивания и отбора природного газа, определяется технологическим регламентом по увеличению полезного объема подземного резервуара 1. Вместе с тем, как упоминалось выше, даже в первом эксплуатационном цикле создается приращение полезного объема 7 (фиг.3) подземного резервуара 1.

Примеры конкретного осуществления способа.

В соответствии со схемой, представленной на фиг.2, буровую скважину подземного резервуара 1, созданного в каменной соли, оборудуют обсадной 2 и двумя подвесными колоннами труб: центральной 3 и соосной с ней внешней колонной 4. Башмак 5 центральной подвесной колонны труб 3 устанавливают на расстоянии 1-2 м от забоя буровой скважины. Расстояние между башмаком 5 центральной подвесной колонны труб 3 и башмаком 6 внешней подвесной колонны труб 4 составляет 1/5 высоты подземного резервуара 1.

До начала эксплуатации подземного резервуара 1 весь его полезный объем, равный 230000 м3, заполнен рассолом, образовавшимся в процессе сооружения этого резервуара через буровую скважину растворением каменной соли.

Первый эксплуатационный цикл подземного резервуара 1, представленный на фиг.3, осуществляют посредством нагнетания в него сжатого природного газа под давлением с производительностью 250000 м3/сут по межтрубному пространству обсадной 2 и дополнительной подвесной 4 колонн труб с вытеснением рассола по центральной подвесной колонне труб 3 и одновременной подачей пресной воды по межтрубному пространству центральной 3 и внешней 4 подвесных колонн труб. Подачу воды производят до установления границы раздела газ-рассол на уровне башмака 6 внешней подвесной колонны труб 4. С прекращением подачи воды в подземный резервуар 1 продолжают нагнетание природного газа и вытеснение рассола на дневную поверхность по центральной подвесной колонне труб 3 до полного заполнения полезного объема подземного резервуара 1 природным газом.

По окончании срока хранения природного газа производят отбор его по межтрубному пространству обсадной 2 и внешней подвесной 4 колонн труб посредством вытеснения пресной водой. Подачу пресной воды осуществляют по центральной подвесной колонне труб 3 до достижения границей раздела газ-рассол проектной отметки кровли подземного резервуара 1, соответствующей приращению полезного объема 7 величиной 14960 м3. На этом первый эксплуатационный цикл подземного резервуара 1 завершают.

После первого отбора хранимого природного газа потребителю приступают к осуществлению следующего эксплуатационного цикла подземного резервуара 1 (фиг.4). Второй и все последующие эксплуатационные циклы проводят с соблюдением технологических режимов, при которых был осуществлен первый эксплуатационный цикл. По окончании второго эксплуатационного цикла величина приращения полезного объема 8 подземного газохранилища 1 составляет 34385 м3.

В третьем и четвертом эксплуатационных циклах достигнуты приращения полезного объема 9 (фиг.5) и 10 (фиг.1), соответствующие величинам 18139 м3 и 31756 м3.

В результате последовательного проведения четырех эксплуатационных циклов, протекающих с соблюдением вышеупомянутых технологических режимов, начальный объем подземного резервуара 1 в целом увеличен на 329240 м3, что является совокупностью приращений полезного объема 7, 8, 9, 10, в сумме составляющих 1,43 первоначального полезного объема подземного газохранилища 1.

Таким образом, последовательное проведение эксплуатационных циклов подземного резервуара 1 позволяет осуществить увеличение его проектного полезного объема с коэффициентом 1,43.

Источники информации

1. Поздняков А.Г. Подземные хранилища гелиевого концентрата / А.Г.Поздняков,

// Газовая промышленность. - сент., 1999. - С.60-61.

2. Игошин А.И. Технология создания подземных газохранилищ, совмещающая строительство и эксплуатацию резервуаров / А.И.Игошин, А.Г.Поздняков // Междунар. конференция по подземному хранению газа. - Москва - сент. - 1995. - С.40-43.

3. Патент RU 2055007 С1, МПК B65G 5/00, опублик. 1996 г.

Способ увеличения полезного объема подземного резервуара, созданного в растворимых породах через буровую скважину, предусматривающий оборудование буровой скважины обсадной, центральной и внешней подвесными колоннами труб, установку башмака центральной подвесной колонны на заданном расстоянии от забоя скважины, последующие закачивание и хранение газа с его отбором путем вытеснения газа пресной водой, при этом увеличение полезного объема подземного резервуара производят в процессе проведения эксплуатационных циклов, для осуществления которых башмак внешней подвесной колонны труб устанавливают над башмаком центральной подвесной колонны, закачивание газа в подземный резервуар ведут по межтрубному пространству обсадной и внешней подвесной колонн труб скважины, а отбор хранимого газа производят по межтрубному пространству обсадной и внешней подвесной колонн труб с одновременной подачей пресной воды по центральной подвесной колонне труб, отличающийся тем, что приращение полезного объема подземного резервуара осуществляют путем закачивания газа в подземный резервуар с одновременной подачей пресной воды по межтрубному пространству центральной и внешней подвесных колонн труб до установления границы раздела газ-рассол на уровне башмака внешней подвесной колонны труб, после чего дальнейшее закачивание газа в подземный резервуар ведут с извлечением рассола на дневную поверхность по центральной подвесной колонне труб до полного заполнения полезного объема этого резервуара газом, при отборе газа подачу пресной воды в подземный резервуар ведут до достижения границей раздела газ-рассол проектной отметки кровли подземного резервуара.



 

Похожие патенты:

Изобретение относится к области эксплуатации подземных хранилищ газа, создаваемых в растворимых породах, например в каменной соли, и предназначено для ускорения процесса закачки и обеспечения пиковых отборов газа.

Изобретение относится к области приборостроения и может быть использовано при автоматизации загрузки грузов, по форме близких к параллелепипеду, в контейнеры. .

Изобретение относится к устройству и способу для обработки длинных железных изделий, производимых прокатным станом, в частности к обвязке длинных изделий. .

Изобретение относится к области пневмотранспортирования сыпучих материалов и может быть использовано в различных отраслях промышленности, в сельском хозяйстве, строительстве для подачи сыпучего материала в материалопровод, который находится под избыточным давлением, или - из области более низкого давления в зону с повышенным давлением.

Изобретение относится к области пневмотранспортирования сыпучих материалов и может быть использовано в различных отраслях промышленности, в сельском хозяйстве, строительстве для подачи сыпучего материала в материалопровод, который находится под избыточным давлением, или - из области более низкого давления в зону с повышенным давлением.

Изобретение относится к обработке штучных грузов, по форме близких к параллелепипеду, примерно одинаковой высоты, например посылок, ящиков с письменной корреспонденцией и др., и может быть использовано при автоматической или ручной загрузке грузов в контейнеры.

Изобретение относится к газовой и нефтяной промышленности и может быть использовано при создании и эксплуатации подземных хранилищ газа (ПХГ) на базе истощенных нефтяных и нефтегазоконденсатных месторождений.

Изобретение относится к области энергетического машиностроения. .

Изобретение относится к транспортирующей трубе для транспортировки твердых материалов согласно признакам ограничительной части пункта 1 формулы изобретения

Изобретение относится к способам создания малопроницаемого экрана в пористой среде в изолируемой зоне пласта при хранении газа в подземном хранилище

Изобретение относится к загрузочно-разгрузочному устройству для емкостей типа контейнеров, бункеров и прочих заполняемых объемов

Изобретение относится к области нефтегазовой промышленности, а именно транспортировке природного газа

Изобретение относится к области энергетического машиностроения

Изобретение относится к области энергетического машиностроения

Изобретение относится к области энергетического машиностроения

Изобретение относится к области энергетического машиностроения
Наверх