Способ выплавки стали в кислородном конвертере

Изобретение относится к металлургии, конкретнее, к процессам выплавки стали в конвертере. Способ включает подачу в конвертер жидкого чугуна и металлолома, шлакообразующих материалов, продувку расплава кислородом сверху через погружную фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода. В шихту дополнительно вводят железосодержащий продукт переработки отвальных шлаков с содержанием железа общего не менее 85% в соотношении к количеству металлолома 2:1, а в составе шлакообразующих материалов дополнительно используют охладители в виде известняка и доломита в количестве, зависящем от расхода чугуна, расхода лома, расхода железосодержащего продукта переработки отвальных шлаков, температуры чугуна, содержания кремния в чугуне, температуры стали. Использование изобретения позволяет увеличить долю расхода чугуна при выплавке стали, снизить угар железа и увеличить выход годного.

 

Изобретение относится к металлургии, конкретнее, к процессам выплавки стали в конвертере с повышенной долей передельного чугуна в металлошихте.

Известен способ выплавки стали в конвертере, включающий подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, высокоосновного агломерата, содержащего окислы кремния, кальция, магния и железа, продувку расплава кислородом сверху через погружную фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода. Продувку расплава в конвертере производят в два этапа с изменением положения фурмы над уровнем ванны в спокойном состоянии от начального положения до рабочего положения с одновременным изменением расхода кислорода от начального значения до рабочего в начальный период продувки. При этом количество металлолома и извести в завалке конвертера устанавливают соответственно равным 0,316 и 0,77 от количества жидкого чугуна в завалке (кн. Технология производства стали в современных конвертерных цехах С.В.Колпаков и др., М.: Машиностроение, 1991, с.24, 61-62, 83-91).

Недостатком известного способа является, недостаточная производительность процесса выплавки стали в конвертере, повышенный угар железа, находящегося в шихте, а также повышенный расход дорогостоящего металлолома. Расход металлолома в определенном соотношении без учета изменения химического и физического тепла чугуна не позволяет вести процесс обезуглероживания и нагрева ванны металла в оптимальном режиме, а расход извести без учета содержания кремния в чугуне приведет к нестабильному шлаковому режиму, ухудшению процессов дефосфорации и десульфурации, повышенному износу футеровки. Применение высокоосновного агломерата приводит к повышению себестоимости продукции, снижению ее рентабельности.

Наиболее близким аналогом заявляемого изобретения является способ выплавки стали в конвертере, включающий подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, высокоосновного агломерата, содержащего окислы кремния, кальция, магния и железа, продувку расплава кислородом сверху через погружную фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода, дополнительно используют высокоосновный агломерат, содержащий окислы алюминия и марганца при следующем содержании в нем окислов, мас.%: SiO2 - 3,0÷6,0, СаО - 10,0÷30,0, MgO - 2,0÷6,5, Al2O3 - 0,5÷1,5, MnO - 1,0÷4,0, FeO - 12,0÷18,0, Fe2O3 - 45,0÷55,0, при этом количество металлолома устанавливают в пределах 0,14÷0,30 и высокоосновного агломерата - в пределах 0,007÷0,07 от количества жидкого чугуна, а время опускания фурмы из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава устанавливают по зависимости:

τ=K1·А·Q/В+K2·С,

где τ - время опускания фуры из начального положения в начале продувки до рабочего положения при начале периода обезуглероживания расплава, мин;

K1 - эмпирический коэффициент, учитывающий физико-химические закономерности наведения первичного шлака в конвертере в начале продувки расплава, равный 0,1÷1,0, мин2·т/м3;

А - количество жидкого чугуна в металлошихте, т;

Q - расход кислорода, м3/мин·т расплава;

В - количество металлолома в металлошихте, т;

K2 - эмпирический коэффициент, учитывающий физико-химические закономерности влияния высокоосновного агломерата на образование первичного шлака и ведение процесса выплавки стали в конвертере, равный 6,0÷9,5, безразмерный;

С - количество высокоосновного агломерата, подаваемого в конвертер, т, устанавливают по зависимости:

С=K3·(Р12),

где P1 - содержание фосфора в чугуне, мас.%;

Р2 - необходимое содержание фосфора в металле на повалке конвертера, мас.%;

K3 - эмпирический коэффициент, учитывающий физико-химические закономерности влияния высокоосновного агломерата на процесс дефосфорации расплава в конвертере, равный 20÷160 т/%,

основность высокоосновного агломерата составляет 2÷5 (патент №2159289, МПК7 С21С 5/28).

Известный способ не обеспечивает получение требуемого технического результата по следующим причинам.

Используемый в известном способе технологический прием применение высокоосновного агломерата требует организации дополнительного производства, организации дополнительного грузопотока, необходимо иметь свободные бункера для организации подачи агломерата в конвертер, что приводит к увеличению себестоимости.

Основным компонентом агломерата являются окислы железа в виде FeO и Fe2O3. Для более быстрого наведения первичного шлака и проведения более полного удаления фосфора необходимо иметь большее количество более низшего окисла, что затрудняет процесс наведения первичного шлака и процесс дефосфорации, снижает выход годного.

В то же время данный способ выплавки стали в конвертере не обеспечивает переработку до 90% жидкого передельного чугуна, т.к. не позволяет вести в оптимальном режиме процесс обезуглероживания и нагрева ванны металла, что приводит к увеличению себестоимости за счет использования в качестве металлошихты более дорогого лома.

Техническая задача изобретения - усовершенствование способа, выплавки стали в конвертере, путем изменения соотношения расхода металлолома и жидкого передельного чугуна, т.е. увеличение доли расхода чугуна при выплавке стали, снижение угара железа, увеличение выхода годного, снижение себестоимости стали.

Техническая задача решается тем, что способ выплавки стали в кислородном конвертере, включающий подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, продувку расплава кислородом сверху через погружную фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода, в отличие от близкого аналога в металлошихту вводят дополнительно железосодержащий продукт переработки отвальных шлаков с содержанием железа общего не менее 85% в соотношении к количеству металлолома 2:1, а в составе шлакообразующих материалов дополнительно используют шлакообразующие охладители в виде известняка и сырого доломита в количестве, определяемом из выражения:

Рохл=0,18·Рчуг-0,033·Рл-0,033·Ржсп+0,053·Тчуг-2,141·Siчуг+0,0047·Тст-128,675,

где Рохл - количество шлакообразующих охладителей, т;

Рчуг - расход чугуна, т;

Рл - расход лома, т;

Ржсп - расход железосодержащего продукта переработки отвальных шлаков, т;

Тчуг - температура чугуна, °С;

Siчуг - содержание кремния в чугуне. мас.%;

Тст - температура стали, °С;

2,141 - коэффициент влияния химического тепла чугуна на расход шлакообразующих охладителей;

0,053 - коэффициент влияния физического тепла чугуна на расход шлакообразующих охладителей;

0,033 - коэффициент влияния расхода лома и железосодержащего продукта переработки отвальных шлаков на расход шлакообразующих охладителей;

0,18 - коэффициент влияния расхода чугуна на расход шлакообразующих охладителей;

0,0047 - коэффициент влияния температуры выпуска стали на расход шлакообразующих охладителей;

128,675 - коэффициент влияния всех неучтенных технологических факторов на расход шлакообразующих охладителей.

Использование железосодержащего продукта переработки отвальных шлаков с содержанием железа общего менее 85% ведет к снижению выхода годного и к увеличению количества шлаков, кроме того, введение в металлошихту выше указанного продукта позволяет сократить количество используемого в плавке дорогостоящего металлолома и увеличить долю чугуна, а следовательно, снизить себестоимость стали.

Сущность заявляемого технического решения заключается в определении расхода шлакообразующих охладителей, позволяющих вести процесс обезуглероживания и нагрева ванны металла в оптимальном режиме, стабилизировать шлаковый режим, улучшить процессы дефосфорации и десульфурации, повысить стойкость футеровки, увеличить выход годного.

Расчетное количество шлакообразующих охладителей в зависимости от содержания кремния в чугуне, температуры чугуна, расхода лома и железосодержащего продукта переработки отвальных шлаков, и расхода чугуна позволяет перерабатывать до 100% чугуна в металлошихте, в результате повысить выход годного, снизить себестоимость стали.

Соотношение количества металлолома к количеству железосодержащего продукта переработки отвальных шлаков получено экспериментальным путем, причем именно при соотношении 1 к 2 обеспечивается одновременно снижение себестоимости стали и увеличивается выход годного при сохранении свойств стали.

Выражение для определения количества шлакообразующих охладителей получено опытным путем.

Данный способ иллюстрируется следующим примером.

Выплавляли сталь 17Г1СА-У. В конвертер завалили 18 тонн металлолома и 36 тонн железосодержащего продукта переработки отвальных шлаков с содержанием железа общего 92% и залили 360 т жидкого чугуна с температурой 1392°С, содержащего 0,67% Si, 0,336% Mn, 0,019% S и 0,064% Р. Перед началом продувки в конвертер завалили 11,7 тонн извести. В 12:03 часа начали продувку стали кислородом. Во время продувки в конвертер присадили 8,9 тонн извести, по израсходованию 6384 м3 кислорода окончен первый период плавки и проведено скачивание шлака. Для охлаждения ванны рассчитывали расход шлакообразующих охладителей исходя из выражения.

Рохл=0,18·360-0,033·18-0,033·36+0,053·1392-2,141·0,67+0,0047·1651--128,675≈14,4 т.

Шлакообразующие охладители (сырой доломит и известняк) присаживали по ходу продувки второго периода плавки равными порциями с интервалом 90÷120 секунд. Температура стали после окончания продувки составила 1651°С. На повалке отобрали пробу стали. Химический состав полученной стали, %: С - 0,039, Mn - 0,049, S - 0,012, Р - 0,004, Cr - 0,01, Ni - 0,015, Cu - 0,018, Fe - остальное.

После получения результатов экспресс-анализа пробы стали произвели выпуск плавки. Во время выпуска в сталеразливочный ковш отдали 1,37 т ФС75; 6,671 т СМн17 и 0,47 т науглераживателя. До начала выпуска в сталеразливочный ковш было присажено 300 кг алюминия вторичного АВ 87.

После окончания выпуска на поверхность стали присажено 2,0 т извести и 0,47 т плавикового шпата. Плавка передана на участок внепечной обработки стали (ВОС).

Использование шлакообразующих охладителей по ходу плавки позволяет вести процесс обезуглероживания и нагрева ванны металла в оптимальном режиме, стабилизировать шлаковый режим, перерабатывать до 100% чугуна, что увеличивает выход годного на 2÷4%.

При внедрении заявляемого способа можно увеличить количество перерабатываемого передельного чугуна в одной плавке.

Способ выплавки стали в кислородном конвертере, включающий подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, продувку расплава кислородом сверху через погружную фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода, отличающийся тем, что в металлошихту вводят дополнительно железосодержащий продукт переработки отвальных шлаков с содержанием железа общего не менее 85% в соотношении к количеству металлолома 2:1, а в составе шлакообразующих материалов дополнительно используют шлакообразующие охладители в виде известняка и сырого доломита в количестве, определяемом из выражения:
Рохл=0,18·Рчуг-0,033·Рл-0,033·Ржсп+0,053·Тчуг-2,141·Siчуг+0,0047·Тст 128,675,
где Рохл - количество шлакообразующих охладителей, т;
Рчуг - расход чугуна, т;
Рл - расход лома, т;
Ржсп - расход железосодержащего продукта переработки отвальных шлаков, т;
Тчуг - температура чугуна, °С;
Siчуг - содержание кремния в чугуне, мас.%;
Тст - температура стали, °С;
2,141 - коэффициент влияния химического тепла чугуна на расход шлакообразующих охладителей;
0,053 - коэффициент влияния физического тепла чугуна на расход шлакообразующих охладителей;
0,033 - коэффициент влияния расхода лома и железосодержащего продукта переработки отвальных шлаков на расход шлакообразующих охладителей;
0,18 - коэффициент влияния расхода чугуна на расход шлакообразующих охладителей;
0,0047 - коэффициент влияния температуры выпуска стали на расход шлакообразующих охладителей;
128,675 - коэффициент влияния всех неучтенных технологических факторов на расход шлакообразующих охладителей.



 

Похожие патенты:

Изобретение относится к сталеплавильному производству, а именно к способу выплавки стали в кислородном конверторе, которое может быть использовано для повышения качества металла.

Изобретение относится к черной металлургии, в частности к способу переработки полиметаллических чугунов с получением полупродукта и ванадийсодержащих шлаков. .

Изобретение относится к черной металлургии, в частности к способу переработки ванадийсодержащих чугунов. .
Изобретение относится к черной металлургии, в частности к кислородно-конвертерному производству. .
Изобретение относится к металлургии, конкретнее к выплавке электротехнических кремнистых марок стали. .

Изобретение относится к области металлургии, в частности к способу и установке для получения стали с высоким содержанием марганца и низким содержанием углерода из жидкого чугуна или жидкой стали и шлакообразующих.
Изобретение относится к металлургии, конкретнее к выплавке электротехнических кремнистых марок стали и их последующему раскислению и легированию. .

Изобретение относится к области металлургии, в частности к способу изготовления нержавеющей стали группы ферритных сталей AISI 4хх на основе жидкого чугуна и твердых материалов с феррохромом.

Изобретение относится к черной металлургии, в частности к выплавке стали в конвертере. .

Изобретение относится к области черной металлургии, в частности к выплавке стали в кислородном конвертере
Изобретение относится к черной металлургии, конкретнее к способам выплавки стали в кислородных конвертерах
Изобретение относится к черной металлургии, конкретнее к способам горячего ремонта футеровки сталеплавильных агрегатов
Изобретение относится к черной металлургии, конкретнее к способам выплавки стали в кислородных конвертерах
Изобретение относится к черной металлургии, в частности к производству ванадиевого шлака и легированной ванадием стали

Изобретение относится к области металлургии, в частности к производству стали

Изобретение относится к области черной металлургии и может быть использовано при выплавке стали в конвертере, в том числе в конвертере с комбинированной продувкой расплава

Изобретение относится к черной металлургии, в частности к способам выплавки стали
Изобретение относится к металлургии, в частности к переделу ванадиевого чугуна дуплекс-процессом

Изобретение относится к области металлургии, в частности для производства стали в кислородном конвертере
Наверх