Датчик физической величины на поверхностных акустических волнах

Изобретение относится к пьезоэлектрическим датчикам, предназначенным для дистанционного контроля различных физических величин. Технический результат: повышение точности измерений. Сущность: датчик содержит пьезоэлектрический звукопровод 1, на рабочей поверхности которого расположены приемо-передающий встречно-штыревой преобразователь (ВПШ) 2, два отражательный однонаправленных ВШП 3 и 4. ВПШ 3 нагружен на импеданс 6, величина которого чувствительна к измеряемой физической величине. На торцах звукопровода расположены акустопоглотители 7. ВШП 2 нагружен на приемопередающую антенну 5. Звукопровод вместе с ВШП помещен в герметичный корпус 8. 1 ил.

 

Изобретение относится к пьезоэлектрическим датчикам, предназначенным для дистанционного контроля различных физических величин.

Известны датчики на поверхностных акустических волнах (ПАВ), содержащие корпус, внутри которого расположен пьезоэлектрический звукопровод, на рабочей поверхности которого расположены два встречно-штыревых преобразователя (ВШП) и акустопоглотитель, нанесенный на торцы звукопровода [1, 2] (Dias J.F. Hewlett-Packard J. - 1981 / - V.32, N 12. - P.21-37. [1], Костромин A.C., Розанов И.А., Черных E.B., Кувахара Хироюки, Томилова Л.Г., Зефиров Н.С. Датчик на поверхностных акустических волнах для детектирования диоксида углерода. Патент РФ RU 2132584 С1, МПК6 H01L 41/18 от 1999.06.27 [2]). В одном из датчиков звукопровод с ВШП на рабочей поверхности представляет собой линию задержки, которая включается в цепь обратной связи усилителя и представляет собой генератор электрических колебаний, частота которого зависит от температуры или от величины деформации звукопровода [1]. Сигнал от датчика с помощью передающей антенны, подсоединенной к генератору, передается на приемное устройство, которое и осуществляет дистанционный контроль. Устройство другого датчика [2] аналогично, только между ВШП расположена пленка, которая может избирательно поглощать различные вещества. В этом случае датчик может контролировать появления различных веществ. При этом корпус не может быть сделан герметичным, что снижает надежность датчика, так как различные агрессивные вещества могут разрушать металлическую пленку, из которой сделаны ВШП. Так как в состав датчика входит усилитель, то датчику необходим источник питания, который необходимо периодически менять и который может отказать (разрядиться) в непредусмотренное для этого время, что снижает надежность датчика. Кроме того, наличие в усилителе полупроводниковых элементов может привести к выходу его из строя при наличии ионизирующего излучения, что также понижает надежность датчика.

Устранить указанные недостатки позволяет устройство, в котором корпус выполнен герметичным, один из ВШП является однонаправленным и нагружен на приемо-передающую антенну, расположенную вне герметичного корпуса, а другой ВШП выполнен с расщепленными штырями и нагружен на импеданс, значение которого зависит от того физического воздействия, величину которого необходимо проконтролировать и который расположен вне герметичного корпуса, а величина импеданса может быть чувствительна к температуре, давлению, влажности, ионизирующему излучению, электромагнитному излучению, наличию различных веществ [3] (Багдасарян А.С., Багдасарян С.А., Гуляев Ю.В., Карапетьян Г.Я. Датчик физической величины на поверхностных акустических волнах. Патент РФ 2296950 С2, МПК G01D 5/00 (2006.01) от 04.10.2007), принимаемое за прототип.

В данном устройстве коэффициент отражения зависит от величины импеданса, величина которого зависит от измеряемой физической величины. Так как корпус герметичный, ВШП и подложка изолированы от окружающей среды, что повышает надежность датчика. Отсутствие в датчике полупроводниковых элементов делает этот датчик малочувствительным к ионизирующему излучению. Отсутствие источника питания позволяет располагать данный датчик в труднодоступных местах лишь однажды. Опрос датчика производится с помощью считывателя, посылающего опрашивающий электромагнитный импульс, который принимается антенной датчика и преобразуется в поверхностные акустические волны (ПАВ), которые, отражаясь от отражательного ВШП, принимаются приемо-передающим ВШП и снова преобразуются в электромагнитный сигнал, который принимается приемником считывателя. Величина этого сигнала, очевидно, зависит от коэффициента отражения, который, в свою очередь, зависит от величины импеданса, нагруженного на отражательный ВШП. Этот импеданс, в свою очередь, зависит от измеряемой физической величины. Таким образом, по величине отраженного от датчика импульса можно судить об измеряемой физической величине. Однако амплитуда принятого считывателем импульса будет зависеть не только от коэффициента отражения, а следовательно, и величины импеданса, но и от расстояний и взаимного расположения антенн датчика и считывателя, что может привести к значительным ошибкам при измерении физической величины и является существенным недостатком данного датчика.

Задача, на решение которой направлено изобретение, состоит в повышении точности измерения путем создания датчика на ПАВ, в котором данные об измеряемой физической величине не будут зависеть от расстояний и взаимного расположения антенн датчика и считывателя. Технический результат, который дает осуществление изобретения, заключается в получении от датчика не одного отраженного импульса, а двух, за счет введения еще одного отражательного ВШП и в выполнении отражательных ВШП однонаправленными, причем амплитуда только одного из них зависит от величины нагрузки,

Это достигается тем, что приемо-передающий ВШП расположен в центре звукопровода и выполнен двунаправленным, а по обе стороны от него расположены однонаправленные отражательные ВШП с внутренними отражателями с одним и тем же числом периодов, один из которых нагружен на импеданс, величина которого чувствительна к измеряемой физической величине, причем расстояние до нагруженного отражательного ВШП равно 2L+Nλ, где L - расстояние между приемо-передающим ВШП и ненагруженным отражательным ВШП, N - число периодов в отражательном ВШП, λ - длина ПАВ на центральной частоте ВШП. Введение второго отражательного ВШП, отражение от которого не зависит от изменений физической величины, как раз и ведет к повышению точности измерений.

На фиг.1 показана топологическая структура устройства на ПАВ в соответствии с изобретением.

Датчик содержит пьезоэлектрический звукопровод 1, на рабочей поверхности которого расположены приемо-передающий ВШП 2, отражательный однонаправленный ВШП 3, который нагружен на импеданс Z 6, другой отражательный однонаправленный ВШП 4. На торцах звукопровода расположены акустопоглотители 7, а ВШП 2 нагружен на приемопередающую антенну 5. Звукопровод вместе с ВШП, помещен в герметичный корпус 8.

Датчик работает следующим образом. При подаче на приемопередающую антенну 5 опрашивающего электромагнитного импульса он с помощью ВШП 2 преобразуется в импульсы ПАВ, которые отражаются от ВШП 3 и ВШП 4. Отраженные импульсы ПАВ от ВШП 3, 4 преобразуются обратно с помощью ВШП 2 в электромагнитные импульсы, которые излучаются антенной 5. Так как однонаправленный ВШП 4 не нагружен, то падающие на него ПАВ почти полностью от него отразятся, поскольку однонаправленный ВШП в режиме холостого хода (при отсутствии нагрузки) должен все падающие на него ПАВ отразить обратно.

В режиме полного согласования ВШП 3 с нагрузкой ПАВ отраженные от активных электродов и ПАВ, отраженные от внутренних отражателей, находятся в противофазе. В этом случае ВШП 3 не будет отражать ПАВ. Но достичь режима полного согласования очень сложно, к тому же это можно сделать только на одной частоте. Поэтому опрашивающий импульс будет отражаться от такого ВШП значительно меньше, чем от ненагруженного ВШП 4, причем коэффициент отражения будет зависеть от степени согласования ВШП 3 с нагрузкой, т.е. от величины этой нагрузки. Эта величина, в свою очередь, будет зависеть от измеряемой физической величины. Следовательно, коэффициент отражения будет зависеть от измеряемой физической величины. Так как отраженный от не нагруженного отражающего ВШП 4 считывающий импульс будет иметь постоянную амплитуду, то сравнивая эту амплитуду с амплитудой, считывающего импульса, отраженного от ВШП 3, можно судить об измеряемой физической величине. Очевидно, что соотношение этих амплитуд не будет зависеть от взаимного расположения антенн считывателя датчика, а будет зависеть только от соотношения коэффициентов отражения от ВШП 3 и 4, которое зависит от величины импеданса, нагруженного на ВШП 3, а следовательно, от измеряемой физической величины. Импульс от отражательного ВШП 3 приходит раньше, потому что расстояние от него до ВШП 2 меньше, чем от ВШП 2 до ВШП 3. Поскольку ВШП 2 двунаправленный, то от него некоторая часть ПАВ, которые приходят на него от ВШП 3 и 4 будет отражаться на обратно на эти ВШП, а далее опять отражаться на ВШП 2. Так как расстояние между ВШП 2 и 4 равно L, а расстояние между ВШП 2 и 3 равно 2(L-Nλ), то переотраженный импульс от ВШП 4 придет на ВШП 2 за время 2L/VПАВ, а отраженный от ВШП 3 импульс придет на ВШП 2 за время 2(L-Nλ)/VПАВ, т.е. эти импульсы будут разделены во времени на величину 2Nλ/VПАВ и не будут перекрываться. Переотраженный от ВШП 4 импульс будет находится за отраженным от ВШП 3 импульсом. Это очень важно, потому что отраженный от нагруженного ВШП 3 может иметь амплитуду, меньшую, чем переотраженный от ВШП 4. Если бы эти импульсы наложились, то это привело бы к значительным ошибкам при определении измеряемой физической величины. Переотраженные от ВШП 3 импульсы будут приходить через время 4(L-Nλ)/VПАВ, т.е. значительно позже отраженных от ВШП 3 и ВШП 4 импульсов. Таким образом, все переотраженные импульсы придут позже отраженных импульсов и не будут влиять на измерения.

Пример выполнения. Датчик выполнен на звукопроводе 1 из YX - среза ниобата лития размерами 8×2×0,5 мм. ВШП 3 и 4 выполнены с внутренними отражателями с периодом в две длины ПАВ на центральной частоте f0=870 МГц и длиной в 33 длины ПАВ на центральной частоте, что обеспечивает однонаправленный режим в 15 дБ. ВШП 2 выполнен двунаправленным с шириной электродов, равной четверти длины ПАВ на центральной частоте, и имеет длину, равную 20 длинам ПАВ. ВШП 4 расположен на расстоянии 2,15 мм от ВШП 2, а ВШП 3 - на расстоянии 4 мм, что обеспечивает задержку между отраженными импульсами в 1 мкс, а переотраженным от ВШП 4 и отраженным от ВШП 3 импульсами - 0,074 мкс при длине считывающего импульса 0,037 мкс, т.е. эти импульсы не перекрываются. Апертуры ВШП 2,3 выбраны равными 80 длин ПАВ на центральной частоте, что позволяет пренебречь потерями на дифракцию при заданных расстояниях. Вносимые потери при подаче сигнала на ВШП 2 и съеме его с ВШП 3 составили 10 дБ. Коэффициент отражения R от ВШП 3, 4 при Z=∞ (разомкнутый ВШП) был не менее 95%, а при замкнутом ВШП 3 (Z=0) R≤9%. Звукопровод вместе с ВШП помещен в герметичный корпус. Антенна 5 в виде полуволнового вибратора и импеданс 6 расположены вне корпуса. Импеданс 6 представляет собой терморезистор НАТ102В, который имеет при 25°С сопротивление 1000 Ом, а также малую емкость. Зависимость сопротивления терморезистора определяется по формуле , где В=3100 К, Т - абсолютная температура, R - сопротивление терморезистора при больших температурах. Нетрудно посчитать, зная сопротивление терморезистора при 25°С (Т=298 К), что при 100°С это сопротивление (Т=373 К) равно 122 Ом. Если соединить параллельно два таких терморезистора, то получим 61 Ом, т.е. близко к 50 Ом, где коэффициент отражения будет минимальным. При нагревании сопротивление терморезистора падает и в районе 100°С становится близким к 50 Ом, что приводит к уменьшению коэффициента отражения и амплитуды отраженного от ВШП 3 импульса в 6-7 раз (16-17 дБ) по отношению к импульсу, отраженному от ВШП 4.

Источники информации

1. Dias J.F. Hewlett-Packard Journal, V.32, N 12, 1981, p.21-37.

2. RU 2132584 C1, МПК6 H01L 41/18 от 27.06.1999.

3. RU 2296950, МПК G01D 5/00 (2006.01) от 04.10.2007 - прототип.

Датчик дистанционного контроля физической величины на поверхностных акустических волнах (ПАВ), содержащий герметичный корпус, внутри которого расположен пьезоэлектрический звукопровод, на рабочей поверхности которого расположены приемопередающий встречно-штыревой преобразователь (ВШП), нагруженный на антенну, которая расположена вне герметичного корпуса, отражательный ВШП, нагруженный на расположенный вне герметичного корпуса импеданс, величина которого чувствительна к измеряемой физической величине, и акустопоглотитель, нанесенный на торцы звукопровода, отличающийся тем, что приемопередающий ВШП расположен в центре звукопровода и выполнен двунаправленным, а по обе стороны от него расположены однонаправленные отражательные ВШП с внутренними отражателями с одним и тем же числом периодов, один из которых нагружен на импеданс, величина которого чувствительна к измеряемой физической величине, причем расстояние до нагруженного отражательного ВШП равно 2(L-Nλ), где L - расстояние между приемо-передающим ВШП и не нагруженным отражательным ВШП, N - число периодов в отражательном ВШП, λ - длина ПАВ на центральной частоте ВШП.



 

Похожие патенты:

Изобретение относится к электронной технике и может быть использовано в качестве блока питания электронно-оптических преобразователей. .

Изобретение относится к радиоэлектронике и может быть использовано при производстве вторичных источников питания для телерадиоприборов, ЭВМ и т.д. .

Изобретение относится к области автоматизации производственных процессов в машиностроении и может быть использовано для контроля положения металлических и неметаллических изделий без механического контакта с ними.

Изобретение относится к оборудованию для наклонно-направленного бурения нефтяных и газовых скважин и предназначено для передачи сигнала в процессе бурения от электронного блока скважинного прибора к наземной аппаратуре.

Изобретение относится к оборудованию для наклонно-направленного бурения нефтяных и газовых скважин и предназначено для окружной и осевой фиксации генератора и его герметичного крепления к электронному блоку (ЭБ) скважинного прибора телеметрической системы.

Изобретение относится к оборудованию для наклонно направленного бурения нефтяных и газовых скважин и предназначено для передачи сигнала в процессе бурения от электронного блока (ЭБ) скважинного прибора на электрический разделитель (ЭР) телеметрической системы, использующей для связи с наземной аппаратурой электромагнитный канал связи.

Изобретение относится к автомобильному электронному приборостроению. .

Изобретение относится к устройству для контроля заданного уровня в емкости. .

Изобретение относится к измерительной технике и может быть использовано при измерении различных параметров, например вибронапряжений и температуры на вращающемся объекте.

Изобретение относится к электромагнитным датчикам перемещения, в частности к датчикам линейных перемещений, применяемым для фиксации момента прохождения контролируемого объекта определенной точки пространства.

Изобретение относится к области приборостроения. .

Изобретение относится к системам диагностического контроля состояния оборудования

Изобретение относится к устройству для определения и/или контроля, по меньшей мере, одного параметра процесса среды, содержащему, по меньшей мере, один сенсорный блок для регистрации параметра процесса, причем сенсорный блок вырабатывает измерительные сигналы, по меньшей мере, один электронный блок для управления сенсорным блоком, причем электронный блок содержит, по меньшей мере, один микропроцессор, и, по меньшей мере, один блок памяти, который связан с сенсорным блоком и в котором могут храниться управляющие данные, причем управляющие данные специфически относятся к сенсорному блоку и считываются электронным блоком

Изобретение относится к измерительной технике и может быть использовано при измерении динамической составляющей вибронапряжений и температуры на вращающемся объекте

Изобретение относится к геофизическим исследованиям скважин в процессе бурения и может быть использовано для электрического разделения колонны бурильных труб, использующейся в качестве электромагнитного канала связи при передаче забойной информации

Изобретение относится к измерительной технике и может быть использовано в измерительных, сигнальных, регулирующих или управляющих системах
Наверх