Катализатор окисления этана и способ, в котором используют этот катализатор

В заявке описаны каталитическая композиция и ее применение для селективного окисления этана до уксусной кислоты и/или для селективного окисления этилена до уксусной кислоты, причем эта композиция в сочетании с кислородом включает элементы молибден, ванадий, ниобий, золото в отсутствие палладия в соответствии с эмпирической формулой:

MoaWbAucVdNBeZf, в которой Z обозначает один или несколько элементов, выбранных из группы, включающей Sn, Ag, Fe и Re; a, b, c, d, e и f обозначают такие грамм-атомные соотношения элементов, при которых 0<a≤1; 0<b<1 и a+b=1; 10-5<c≤0,02; 0<d≤2; 0<е≤1 и 0,0001≤f≤0,05. Описан способ получения уксусной кислоты из газообразной смеси, включающей этан и/или этилен, который включает введение газообразной смеси в контакт с содержащим молекулярный кислород газом при повышенной температуре в присутствии описанной выше каталитической композиции. Технический эффект - повышение селективности в отношении уксусной кислоты в сочетании с пониженной селективностью в отношении этилена. 2 н. и 11 з.п. ф-лы, 1 табл.

 

Изобретение относится к катализатору селективного окисления этана до уксусной кислоты и/или селективного окисления этилена до уксусной кислоты, к способу получения уксусной кислоты с использованием вышеупомянутого катализатора.

Катализаторы, включающие молибден, ванадий и ниобий в сочетании с кислородом, предназначенные для применения в процессах получения уксусной кислоты окислением этана и этилена, в данной области техники известны, например, из US 4250346, EP-A-1043064, WO 99/20592 и DE 19630832.

В US №4250346 описано окислительное дегидрирование этана до этилена в ходе проведения газофазной реакции с относительно высокими степенью превращения, селективностью и производительностью при температуре меньше примерно 500°С с применением в качестве катализатора композиции, включающей как элементы молибден, Х и Y в соотношении MoaXbYc, в котором X обозначает Cr, Mn, Nb, Ta, Ti, V и/или W, а предпочтительно Mn, Nb, V и/или W; Y обозначает Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl и/или U, a предпочтительнее Sb, Се и/или U, а обозначает 1, b обозначает число от 0,05 до 1,0, а с обозначает число от 0 до 2, а предпочтительно от 0,05 до 1,0, при условии, что общее значение с для Co, Ni и/или Fe составляет меньше 0,5.

WO 99/20592 относится к способу селективного получения уксусной кислоты из этана, этилена или их смесей и кислорода при высокой температуре в присутствии катализатора, отвечающего формуле MoaPdbXcYd, в которой Х обозначает один или несколько следующих элементов: Cr, Mn, Nb, Ta, Ti, V, Te и W; Y обозначает один или несколько следующих элементов: B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Au, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Nb, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl и U, а обозначает 1, b обозначает число от 0,0001 до 0,01, с обозначает число от 0,4 до 1, a d обозначает число от 0,005 до 1.

DE-A1 19630832 относится к аналогичной каталитической композиции, в которой а обозначает 1, b>0, c>0, a d обозначает число от 0 до 2. В предпочтительном варианте а обозначает 1, b обозначает число от 0,0001 от 0,5, с обозначает число от 0,1 до 1,0, а d обозначает число от 0 до 1,0.

Для действия катализаторов по обоим публикациям WO 99/20592 и DE 19630832 необходимо присутствие палладия.

В ЕР-А 1043064 описана каталитическая композиция для окисления этана до этилена и/или уксусной кислоты и/или для окисления этилена до уксусной кислоты; эта композиция включает в сочетании с кислородом элементы молибден, ванадий, ниобий и золото в отсутствии палладия в соответствии с эмпирической формулой:

в которой Y обозначает один или несколько элементов, выбранных из группы, включающей Cr, Mn, Та, Ti, В, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Со, Rh, Ir, Сu, Ag, Fe, Ru, Os, К, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re, Те, La и Pd; а, b, с, d, е и f обозначают такие грамм-атомные соотношения элементов, при которых 0<a≤1; 0≤b<1 и a+b=1; 10-5<c≤0,02; 0<d≤2; 0<e≤1 и 0≤f≤2.

Потребность в создании катализатора окисления этана и/или этилена до уксусной кислоты и разработке способа получения уксусной кислоты с применением такого катализатора, при осуществлении которого катализатор создает возможность добиться высокой селективности превращения в уксусную кислоту, сохраняется.

Было установлено, что с использованием катализатора, который в сочетании с кислородом включает элементы молибден, ванадий, ниобий и золото, а также один или несколько элементов, выбранных из группы, включающей бор, алюминий, галлий, индий, германий, олово, свинец, сурьму, медь, платину, серебро, железо и рений, в отсутствие палладия существует возможность окислить этан и/или этилен до уксусной кислоты с высокой селективностью в отношении уксусной кислоты. Более того, была установлена возможность использования катализаторов по настоящему изобретению для достижения высокой селективности в отношении уксусной кислоты с пониженной, например небольшой, если она вообще проявляется, селективностью в отношении этилена.

Соответственно, по настоящему изобретению предлагается каталитическая композиция для селективного окисления этана до уксусной кислоты и/или для селективного окисления этилена до уксусной кислоты, причем эта композиция в сочетании с кислородом включает элементы молибден, ванадий, ниобий, золото в отсутствии палладия в соответствии с эмпирической формулой:

в которой Z обозначает один или несколько элементов, выбранных из группы, включающей В, Al, Ga, In, Ge, Sn, Pb, Sb, Cu, Pt, Ag, Fe и Re;

a, b, c, d, e и f обозначают такие грамм-атомные соотношения элементов, при которых

0<а≤1; 0<b<1 и а+b=1;

10-5<с≤0,02;

0<d≤2;

0<е≤1;

0,0001≤f≤0,05.

Катализаторы, охватываемые формулой (I), включают:

MOaWbAucVdNbeSnf

MOaAucVdNbeSnf

В предпочтительном варианте Z обозначает Sn, Ag, Fe или Re, преимущественно Sn.

Примеры приемлемых катализаторов, отвечающих формуле (I), включают:

Mo1,000V0,423Nb0,115Au0,008Ag0,008Oy,

Mo1,000V0,423Nb0,115Au0,008Fe0,0156Oy,

Mo1,000V0,423Nb0,115Au0,008Re0,008Oy,

Mo1,00V0,423Nb0,115Au0,0008Sn0,0008Oy и

Mo1,00V0,423Nb0,117Au0,0008Sn0,0156Oy, где у обозначает число, которое соответствует валентностям элементов в композиции для кислорода.

Предпочтительно 0,01<а≤1. В предпочтительном варианте 0,1<d≤2. Предпочтительно 0,01<е≤0,5, например, 0,05≤е≤0,15. В предпочтительном варианте 0,0005≤f≤0,02.

Преимущество каталитических композиций по настоящему изобретению состоит в том, что они высокоселективны при превращении этана и/или этилена в уксусную кислоту. С использованием каталитических композиций по настоящему изобретению может быть достигнута селективность в отношении уксусной кислоты как правило по меньшей мере 50 мольных %, предпочтительно по меньшей мере 60 мольных %, в частности по меньшей мере 70 мольных %.

Так, в частности, с использованием каталитических композиций по настоящему изобретению высокая селективность в отношении уксусной кислоты может быть достигнута в сочетании с низкой, если она вообще проявляется, селективностью в отношении этилена.

При применении каталитических композиций по настоящему изобретению селективность в отношении этилена составляет как правило меньше 25 мольных %, предпочтительно меньше 10 мольных %, в частности меньше 5 мольных %.

В предпочтительном варианте при применении каталитических композиций по настоящему изобретению селективность в отношении уксусной кислоты составляет по меньшей мере 60 мольных %, в частности по меньшей мере 70 мольных %, а селективность в отношении этилена составляет меньше 15 мольных %, в частности меньше 10 мольных %.

В том смысле, в котором оно использовано в настоящем описании, понятие "селективность" относится к процентной доле, которая отражает количество целевой получаемой как продукт уксусной кислоты в сравнении с общим количеством углерода в образующихся продуктах:

селективность, % = 100 × число молей получаемой уксусной кислоты/S,

где S обозначает сумму молярных эквивалентов кислоты (на углеродной основе) всех углеродсодержащих продуктов, за исключением алканов, в отходящем потоке.

Эти каталитические композиции могут быть приготовлены по любому из методов, обычно применяемых при получении катализаторов. Такой катализатор может быть успешно приготовлен из раствора растворимых соединений и/или комплексов, и/или соединений каждого из металлов. В предпочтительном варианте раствор представляет собой водную систему, значение pH которой находится в интервале от 1 до 12, предпочтительно от 2 до 8, при температуре от 20 до 100°С.

Обычно смесь соединений, содержащих такие элементы, готовят растворением достаточных количеств растворимых соединений и диспергированием всех нерастворимых соединений, с тем чтобы добиться целевого грамм-атомного соотношения элементов в каталитической композиции. В дальнейшем каталитическая композиция может быть приготовлена удалением из смеси растворителя. Катализатор можно кальцинировать выдержкой при температуре от 200 до 550°С, целесообразно на воздухе или в кислороде, в течение периода от 1 мин до 24 ч. В предпочтительном варианте воздух или кислород представляет собой медленно движущийся поток.

Катализатор можно использовать не нанесенным или нанесенным на носитель. Приемлемые носители включают диоксид кремния, оксид алюминия, диоксид циркония, диоксид титана, карбид кремния и смеси двух или большего их числа.

Дополнительные подробности приемлемого метода приготовления каталитической композиции можно обнаружить, например, в ЕР-А 0166438.

Катализатор можно использовать в форме неподвижного или псевдоожиженного слоя.

В другом варианте по настоящему изобретению предлагается способ селективного получения уксусной кислоты из газообразной смеси, включающей этан и/или этилен, причем этот способ включает введение газообразной смеси в контакт с содержащим молекулярный кислород газом при повышенной температуре в присутствии каталитической композиции, которая представлена выше в настоящем описании.

Этан селективно окисляют до уксусной кислоты и/или этилен селективно окисляют до уксусной кислоты. В предпочтительном варианте этан и необязательно этилен окисляют до включающей уксусную кислоту смеси, которую можно использовать с добавлением или без добавления или удаления уксусной кислоты с целью получения винилацетата реакцией с содержащим молекулярный кислород газом в объединенном процессе.

Исходный газ включает этан и/или этилен, предпочтительно этан.

Этан и/или этилен можно использовать в по существу чистом виде или смешанным с одним или несколькими такими веществами, как азот, метан, диоксид углерода и вода в форме водяного пара, который может содержаться в значительных количествах, например больше 5 об.%, или с одним или несколькими такими веществами, как водород, моноксид углерода, С34алкены и алкены, которые могут находиться в небольших количествах, например меньше 5 об.%.

Содержащим молекулярный кислород газом может служить воздух или газ, более богатый или более бедный молекулярным кислородом, чем воздух, например кислород. Приемлемым газом может быть, например, кислород, разбавленный подходящим разбавителем, например азотом.

В предпочтительном варианте, в дополнение к этану и/или этилену и содержащему молекулярный кислород газу, вводят воду (водяной пар), поскольку это может улучшить селективность в отношении уксусной кислоты.

Целесообразная повышенная температура может находиться в интервале от 200 до 500°С, предпочтительно от 200 до 400°С.

Целесообразное давление может быть атмосферным или повышенным, например в интервале от 1 до 50 бар, предпочтительно от 1 до 30 бар.

В предпочтительном варианте перед применением в способе по изобретению каталитическую композицию кальцинируют. Приемлемое кальцинирование может быть осуществлено выдержкой при повышенной температуре, целесообразно в интервале от 250 до 500°С, в присутствии кислородсодержащего газа, например воздуха.

Рабочие условия и другую информацию, которая может быть использована для выполнения изобретения, можно почерпнуть в вышеупомянутой литературе, посвященной данной области техники, например в US №4250346.

Способ по изобретению далее дополнительно проиллюстрирован со ссылкой на следующие примеры.

ПРИГОТОВЛЕНИЕ КАТАЛИЗАТОРА

Приготовление катализатора А (сравнительный)

Растворением с перемешиванием 22,935 г молибдата аммония и 0,0357 г тетрахлораурата аммония в 100 мл дистиллированной воды при 70°С готовили раствор 'А'. Растворением с перемешиванием 6,434 г ванадата аммония в 150 мл дистиллированной воды при 70°С готовили раствор 'Б'. Растворением с перемешиванием 7,785 г аммонийоксалата ниобия в 100 мл дистиллированной воды при 70°С готовили раствор 'В'. Каждый из растворов А, Б и В оставляли стоять в течение 15 мин с целью предоставить возможность для максимальной солюбилизации компонентов. Затем с перемешиванием при 70°С раствор В быстро вводили в раствор Б. Смешанный раствор Б/В перемешивали в течение 15 мин при 70°С, после чего быстро вводили в раствор. Конечный смешанный раствор А/Б/В оставляли перемешиваться при 70°С в течение дальнейших 15 мин, после чего раствор нагревали до кипения для содействия выпариванию воды. Полного выпаривания смеси реагентов добивались в течение 1,5 ч, в результате чего образовывалась сухая паста. Затем химический стакан с высушенной пастой переносили в сушильный шкаф для дополнительной сушки при 120°С в течение 2 ч. После сушки каталитический предшественник измельчали до тонкодисперсного порошка, а затем просеивали через сито с размерами ячеек 0,2 мм. Далее полученный из порошкообразного катализатора пирог кальцинировали в неподвижном воздухе в сушильном шкафу при 400°С в течение 4 ч. Приготовленный оксидный катализатор отвечал следующей номинальной формуле:

Мо1,000V0,423Nb0,115Au0,0008

Этот катализатор не был катализатором в соответствии с изобретением, поскольку он не содержал элемента группы, включающей В, Al, Ga, In, Ge, Sn, Pb, Sb, Cu, Pt, Ag, Fe и Re.

Приготовление катализатора Б

Катализатор Б готовили так же, как катализатор А, за исключением того, что в раствор А дополнительно добавляли 0,0190 г хлорида олова(II).

Приготовленный оксидный катализатор отвечал следующей номинальной формуле:

Mo1,000V0,423Nb0,115Au0,0008Sn0,0008Oy

Приготовление катализатора В

Катализатор В готовили так же, как катализатор А, за исключением того, что в раствор А добавляли 0,3792 г хлорида олова(II). Приготовленный оксидный катализатор отвечал следующей номинальной формуле:

Mo1,000V0,423Nb0,117Au0,0008Sn0,0156Oy

Приготовление катализатора Г

Катализатор Г готовили так же, как катализатор А, но с добавлением в раствор А 0,0299 г ацетата сурьмы(III) (FW 298.88). Таким образом, оксидный катализатор отвечал следующей номинальной формуле:

Mo1,000V0,423Nb0,115Au0,008Sb0,008Oy

Приготовление катализатора Д

Катализатор Д готовили так же, как катализатор А, но с добавлением в раствор А 0,0200 г ацетата меди(II) (FW 199.65). Таким образом, оксидный катализатор отвечал следующей номинальной формуле:

Mo1,000V0,423Nb0,115Au0,008Cu0,008Oy

Приготовление катализатора Е

Катализатор Е готовили так же, как катализатор А, но с добавлением в раствор А 0,0027 г ацетата платины (FW 352.66). Таким образом, оксидный катализатор отвечал следующей номинальной формуле:

Mo1,000V0,423Nb0,115Au0,008Pt0,0006Oy

Приготовление катализатора Ж

Катализатор Г готовили так же, как катализатор А, но с добавлением в раствор А 0,0174 г ацетата серебра(I) (FW 166.92). Таким образом, оксидный катализатор отвечал следующей номинальной формуле:

Mo1,000V0,423Nb0,115Au0,008Ag0,008Oy

Приготовление катализатора З

Катализатор З готовили так же, как катализатор А, но с добавлением в раствор А 0,8080 г нитрата железа(III) (FW 404.00). Таким образом, оксидный катализатор отвечал следующей номинальной формуле:

Mo1,000V0,423Nb0,115Au0,008Fe0,0156Oy

Приготовление катализатора И

Катализатор И готовили так же, как катализатор А, но с добавлением в раствор А 0,0268 г рената аммония (FW 268.24). Таким образом, оксидный катализатор отвечал следующей номинальной формуле:

Mo1,000V0,423Nb0,115Au0,008Re0,008Oy

Приготовление катализатора К

Катализатор К готовили так же, как катализатор А, но с добавлением в раствор А 0,0256 г нитрата галлия (FW 255.74). Таким образом, оксидный катализатор отвечал следующей номинальной формуле:

Мо1,000V0,423Nb0,115Au0,008Ga0,008Oy

Общий метод проведения реакции окисления этана

Как правило, 5 мл порошкообразного катализатора от А до К смешивали с 15 мл стеклянного бисера с диаметром шариков 0,4 мм, получая слой разбавленного катализатора объемом 20 мл. Далее этот разбавленный катализатор загружали в реактор с неподвижным слоем, выполненный из сплава "Хастеллой", с внутренним диаметром 12 мм и длиной 40 см. Катализатор удерживали в центре реактора с помощью кварцевых настенных штырей совместно с инертным насадочным материалом поверх слоя катализатора и под ним. Далее для проверки на наличие утечек реактор испытывали под давлением гелия 20 бар. После этого в гелии под давлением 16 бар катализатор активировали нагреванием до 220°С со скоростью 5°С/мин и выдержкой в течение 1 ч с целью гарантировать полное разложение каталитических предшественников.

Затем в реактор вводили потоки этана, этилена, 20% кислорода в гелии и воды, необходимые для гарантии создания требуемой входящей композиции. Эта композиция включала 52 об.% этана, 6,7 об.% кислорода, 10 об.% этилена, 5 об.% воды, а остальное - гелий. Общий расход исходных материалов поддерживали на таком уровне, при котором гарантировалась ССПГ от 2000 до 9000/4. После установления равновесия в течение 60 мин из отходящего потока отбирали пробы газа для ГХ системы (Unicam модели 4400) с целью количественного определения этана, этилена, кислорода и гелия.

С целью содействия прямому сравнению для достижения в реакторе для каждого из катализаторов от А до К аналогичной температуры от 299 до 301°С задаваемую температуру в реакторе повышали до 293°С. По прошествии еще одного периода установления равновесия в течение 60 мин начинали собирать жидкий продукт, и этот процесс продолжали в течение, как правило, 18 ч. В течение периода эксперимента состав отходящего газа определяли ГХ анализом (ProGC, Unicam). Объем отходящего газа в период всего эксперимента измеряли расходомером для воды/газа. После периода эксперимента жидкие продукты собирали и взвешивали. Состав жидких продуктов определяли газохроматографическим анализом [приборы Unicam моделей 4400 и 4200, снабженные соответственно термокондуктометрическим детектором (ТКД) и пламенно-ионизационным детектором (ПИД)].

По данным анализа скоростей потоков и состава исходных материалов и продуктов рассчитывали следующие параметры:

степень превращения

этана: (число молей этана на входе - число молей этана на выходе)/число молей этана на входе × 100;

кислорода: (число молей кислорода на входе - число молей кислорода на выходе)/число молей кислорода на входе × 100

селективность;

в отношении уксусной кислоты (С, мольных %): (число молей уксусной кислоты × 2 на выходе)/((число молей этилена × 2 на выходе - число молей этилена × 2 на входе) + число молей СО на выходе + число молей СО2 на выходе + число молей уксусной кислоты × 2 на выходе) × 100;

в отношении этилена (С, мольных %): (число молей этилена × 2 на выходе)/((число молей этилена × 2 на выходе - число молей этилена × 2 на входе) + число молей СО на выходе + число молей СО2 на выходе + число молей уксусной кислоты × 2 на выходе) × 100;

в отношении СО (С, мольных %): (число молей СО на выходе)/((число молей этилена × 2 на выходе - число молей этилена × 2 на входе) + число молей

СО на выходе + число молей СО2 на выходе + число молей уксусной кислоты × 2 на выходе) × 100;

в отношении CO2 (С, мольных %): (число молей CO2 на выходе)/((число молей этилена × 2 на выходе - число молей этилена × 2 на входе) + число молей СО на выходе + число молей CO2 на выходе + число молей уксусной кислоты × 2 на выходе) × 100;

в отношении СОх: селективность в отношении СО (С, мольных %) + селективность в отношении СО2 (С, мольных %) ОПР (объемная производительность), %: (г уксусной кислоты)/кг каталитического слоя/ч.

Как правило, массовый баланс и углеродный баланс для реакции был, как устанавливали, равным 100±5%.

Эксперимент А и примеры с 1 по 9

При осуществлении вышеописанного общего метода проведения реакции использовали каждый из катализаторов от А до К. Результаты представлены в таблице. Каждый катализатор оценивали в обычных условиях, указанных в таблице.

Эксперимент Катализатор Превр. этана, С, мол.% Сел. в отношении уксусной кислоты. С, мол.% Сел. в отношении С2Н4, С, мол.% Сел. в отношении СОх, С, мол.% ОПР, АсОНг/кг кат./ч
А А 7,8 47,0 34,4 18,5 163
Пример 1 Б 4,2 71,3 0,0 28,7 118
Пример 2 В 3,8 70,8 0,0 29.2 105
Пример 3 Г 6,3 56,9 24,7 18,5 133,6
Пример 4 Д 4,1 58,4 12,9 28,7 85,9
Пример 5 Е 5,1 59,9 12,6 27,4 112,7
Пример 6 Ж 3,1 63,4 1,7 34,9 99,8
Пример 7 3 4,7 68,1 5,6 26,4 119,3
Пример 8 И 5,0 70,1 5,7 24,2 131,1
Пример 9 К 5,8 53,9 27,5 18,7 115,8

Условия:

52 об.% этана, 6,7 об.% кислорода, 10 об.% этилена, 5 об.% воды, остальное - гелий. ССПГ: 3200 ч-1, 16 бар.

Представленные в таблице результаты ясно показывают, что, если сопоставить со сравнительным катализатором, катализатором А, катализаторы по настоящему изобретению обеспечивают достижение более высокой селективности в отношении уксусной кислоты. Более того, высокой селективности в отношении уксусной кислоты добиваются в сочетании с пониженной селективностью в отношении этилена.

1. Каталитическая композиция для селективного окисления этана до уксусной кислоты и/или для селективного окисления этилена до уксусной кислоты, которая в сочетании с кислородом включает элементы молибден, ванадий, ниобий, золото в отсутствии палладия в соответствии с эмпирической формулой
MoaWbAucVdNbeZf (I),
в которой Z обозначает один или несколько элементов, выбранных из группы, включающей Sn, Ag, Fe или Re;
a, b, c, d, e и f обозначают такие грамм-атомные соотношения элементов, при которых
0<a≤1; 0≤b<1 и a+b=1; 10-5<c≤0,02; 0<d≤2; 0<е≤1 и 0,0001≤f≤0,05.

2. Каталитическая композиция по п.1, в которой 0,01<а≤1, 0,1<d≤2, 0,01<е≤0,5 и 0,0005≤f≤0,02.

3. Каталитическая композиция по одному из предыдущих пунктов, в которой Z обозначает Sn.

4. Каталитическая композиция по п.4, в которой формулу I выбирают из группы, включающей MoaWbAucVdNbeSnf и MoaAucVdNbeSnf.

5. Каталитическая композиция по п.1, отвечающая формуле, выбранной из группы, включающей
Mo1,000V0,423Nb0,115Au0,008Ag0,008Oу,
Mo1,000V0,423Nb0,115Au0,008Fe0,0156Oу,
Mo1,000V0,423Nb0,115Au0,008sRe0,008Oу,
Mo1,00V0,423Nb0,115Au0,0008Sn0,0008Oу и
Mo1,00V0,423Nb0,117Au0,0008Sn0,0156Oу, где у обозначает число, которое соответствует валентностям элементов в композиции для кислорода.

6. Способ получения уксусной кислоты из газообразной смеси, включающей этан и/или этилен, который включает введение газообразной смеси в контакт с содержащим молекулярный кислород газом при повышенной температуре в присутствии каталитической композиции по п.1.

7. Способ по п.6, в котором этан и необязательно этилен окисляют до смеси, включающей уксусную кислоту.

8. Способ по п.6, в котором повышенная температура находится в интервале от 200 до 500°С.

9. Способ по п.7, в котором повышенная температура находится в интервале от 200 до 500°С.

10. Способ по п.6, в котором давление находится в интервале от 1 до 50 бар.

11. Способ по п.7, в котором давление находится в интервале от 1 до 50 бар.

12. Способ по одному из пп.6-11, в котором селективность реакции окисления этана и/или этилена до уксусной кислоты составляет по меньшей мере 50 мол.%.

13. Способ по п.12, в котором селективность реакции окисления этана и/или этилена до уксусной кислоты составляет по меньшей мере 60 мол.%.



 

Похожие патенты:

Изобретение относится к одностадийному способу парофазного окисления алкана, такого, как пропан, приводящему к получению ненасыщенной карбоновой кислоты, такой, как акриловая или метакриловая кислота, в присутствии смешанного металлооксидного катализатора и при избытке алкана относительно количества кислорода.
Изобретение относится к усовершенствованному способу проведения непрерывного, гетерогенного, катализированного, частичного окисления в газовой фазе, по меньшей мере, одного органического соединения, выбранного из группы, включающей пропен, акролеин, изо-бутен, метакролеин, изо-бутан и пропан, в окислительном реакторе, загружаемая газовая смесь которого наряду с, по меньшей мере, одним подлежащим частичному окислению соединением и молекулярным кислородом в качестве агента окисления включает, по меньшей мере, один ведущий себя в основном инертно в условиях гетерогенного, катализированного, частичного окисления в газовой фазе газ-разбавитель, при котором для загружаемой газовой смеси в качестве источника как кислорода, так и инертного газа применяют также воздух, который до этого сжимают в компрессоре от низкого начального давления до повышенного конечного давления, где воздух перед его входом в компрессор подвергают, по меньшей мере, одной механической операции отделения, с помощью которой могут быть отделены диспергированные в воздухе частицы твердого вещества.

Изобретение относится к способу длительного проведения гетерогенно катализированного частичного окисления в газовой фазе пропена в акриловую кислоту, при котором содержащую пропен, молекулярный кислород и, по меньшей мере, один инертный газ исходную реакционную газовую смесь 1, содержащую молекулярный кислород и пропен в молярном соотношении O2:С3Н 6 1, сначала на первой стадии реакции пропускают при повышенной температуре через первый катализаторный неподвижный слой 1, катализаторы которого выполнены таким образом, что их активная масса представляет собой, по меньшей мере, один оксид мультиметаллов, содержащий молибден и/или вольфрам, а также, по меньшей мере, один из элементов группы, включающей висмут, теллур, сурьму, олово и медь, таким образом, что конверсия пропена при одноразовом проходе составляет 93 мол.% и связанная с этим селективность образования акролеина, а также образования побочного продукта акриловой кислоты вместе составляет 90 мол.%, температуру покидающей первую реакционную стадию продуктовой газовой смеси 1 посредством прямого и/или косвенного охлаждения, в случае необходимости, снижают и к продуктовой газовой смеси 1, в случае необходимости, добавляют молекулярный кислород и/или инертный газ, и после этого продуктовую газовую смесь 1 в качестве содержащей акролеин, молекулярный кислород и, по меньшей мере, один инертный газ исходной реакционной смеси 2, которая содержит молекулярный кислород и акролеин в молярном соотношении O2:C3H4O 0,5, на второй стадии реакции при повышенной температуре пропускают через второй катализаторный неподвижный слой 2, катализаторы которого выполнены так, что их активная масса представляет собой, по меньшей мере, один оксид мультиметаллов, содержащий элементы молибден и ванадий, таким образом, что конверсия акролеина при одноразовом проходе составляет 90 мол.% и селективность результирующегося на обеих стадиях образования акриловой кислоты, в пересчете на превращенный пропен, составляет 80 мол.% и при котором в течение времени повышают температуру каждого неподвижного катализаторного слоя независимо друг от друга, при этом частичное окисление в газовой фазе, по меньшей мере, один раз прерывают и при температуре катализаторного неподвижного слоя 1 от 250 до 550°С и температуре катализаторного неподвижного слоя 2 от 200 до 450°С состоящую из молекулярного кислорода, инертного газа и, в случае необходимости, водяного пара газовую смесь G пропускают сначала через катализаторный неподвижный слой 1, затем, в случае необходимости, через промежуточный охладитель и в заключение через катализаторный неподвижный слой 2, в котором по меньшей мере одно прерывание осуществляют прежде, чем повышение температуры катализаторного неподвижного слоя 2 составляет 8°С или 10°С, причем длительное повышение температуры, составляющее 8°С или 10°С, имеется тогда, когда при нанесении фактического протекания температуры катализаторного неподвижного слоя в течение времени на проложенной через точки измерения уравнительной кривой по разработанному Лежандром и Гауссом методу наименьшей суммы квадратов погрешностей достигнуто повышение температуры 8°С или 10°С.

Изобретение относится к термическому способу разделения фракционной конденсацией смеси продукт-газа, полученного гетерогенным катализированным частичным окислением в газовой фазе пропена и/или пропана до акриловой кислоты, для отделения, по меньшей мере, одного массового потока, обогащенного акриловой кислотой, из смеси продукт-газа, содержащего акриловую кислоту, который включает непрерывную стационарную эксплуатацию, по меньшей мере, одного устройства для термического разделения, содержащего, по меньшей мере, одну эффективную разделительную камеру с ректификационной колонной имеющей массообменные тарелки в качестве встроенных разделительных элементов, в которую загружают смесь продукт-газа, содержащего акриловую кислоту, в качестве, по меньшей мере, одного массового потока, содержащего акриловую кислоту, и из которого выгружают, по меньшей мере, один массовый поток, содержащий акриловую кислоту, при условии, что массовый поток, который в общем загружают в эффективную разделительную камеру и получают путем сложения загружаемых в эффективную разделительную камеру отдельных массовых потоков, содержит X вес.% отличных от акриловой кислоты компонентов, массовый поток, который выгружают из эффективной разделительной камеры с наибольшей долей акриловой кислоты, содержит Y вес.% отличных от акриловой кислоты компонентов, соотношение X:Y составляет 5, эффективная разделительная камера, за исключением места загрузки и места выгрузки потока, ограничивается твердой фазой и содержит, кроме массообменных тарелок в качестве встроенных разделительных элементов в ректификационной колонне, по меньшей мере, один циркуляционный теплообменник, и общий объем камеры, заполненный жидкой фазой, составляет 1 м3, причем температура жидкой фазы, по меньшей мере, частично составляет 80°С, при разделении эффективной разделительной камеры на n индивидуальных объемных элементов, причем самая высокая и самая низкая температуры находящейся в отдельном объемном элементе жидкой фазы различаются не более чем на 2°С, а объемный элемент в эффективной разделительной камере является сплошным, общее время пребывания tобщ 20 ч,причем А=(Тi-То )/10°С, То=100°С, Ti=среднее арифметическое значение из самой высокой и самой низкой температуры объемного элемента i в жидкой фазе в °С, msi = общая масса акриловой кислоты, содержащаяся в объеме жидкой фазы объемного элемента i,mi = общее количество выгружаемого из объемного элемента i потока жидкофазной массы, и при условии, что объемные элементы i с содержащейся в них жидкофазной массой mi и в качестве объемных элементов с мертвой зоной также не включены в сумму всех объемных элементов i, как и объемные элементы i, которые не содержат жидкую фазу, и общее количество жидкой фазы, содержащейся в объемных элементах с мертвой зоной, составляет не более 5 вес.% от общего количества жидкой фазы, содержащейся в эффективной разделительной камере.

Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина реакцией газофазного каталитического окисления, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, имеющего такую конструкцию, что имеется множество реакционных труб, снабженных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, и снаружи указанных реакционных труб может течь теплоноситель для регулирования температуры реакции, в котором изменение по повышению температуры указанной реакции газофазного каталитического окисления проводится путем изменения температуры теплоносителя на впуске для регулирования температуры реакции, наряду с тем, что (1) изменение температуры теплоносителя на впуске для регулирования температуры реакции проводится не более чем на 2°С для каждой операции изменения как таковой, (2) когда операция изменения проводится непрерывно, операция изменения проводится так, что интервал времени от операции изменения, непосредственно предшествующей данной, составляет не менее 10 мин и, кроме того, разность между максимальным значением пиковой температуры реакции каталитического слоя реакционной трубы и температурой теплоносителя на впуске для регулирования температуры реакции составляет не менее 20°С.

Изобретение относится к усовершенствованному способу проведения гетерогенно каталитического частичного окисления в газовой фазе акролеина в акриловую кислоту, при котором исходную реакционную газовую смесь, содержащую акролеин, молекулярный кислород и, по меньшей мере, один инертный газ-разбавитель, пропускают через находящийся при повышенной температуре катализаторный неподвижный слой, катализаторы которого выполнены так, что их активная масса содержит, по меньшей мере, один оксид мультиметалла, который содержит элементы Мо и V, и при котором в течение времени повышают температуру катализаторного неподвижного слоя, при этом частичное окисление в газовой фазе прерывают, по меньшей мере, один раз и при температуре катализаторного неподвижного слоя от 200 до 450°С через него пропускают свободную от акролеина, содержащую молекулярный кислород, инертный газ и, в случае необходимости, водяной пар, а также, в случае необходимости, СО, газовую смесь G окислительного действия, причем, по меньшей мере, одно прерывание осуществляют прежде, чем повышение температуры катализаторного неподвижного слоя составляет длительно 2°С, или 4°С, или 8°С, или 10°С, причем длительное повышение температуры, составляющее 2°С, или 4°С, или 8°С, или 10°С имеется тогда, когда при нанесении фактического протекания температуры катализаторного неподвижного слоя в течение времени на проложенной через точки измерения уравнительной кривой по разработанному Лежандром и Гауссом методу наименьшей суммы квадратов погрешностей достигнуто повышение температуры 2°С, или 4°С, или 8°С, или 10°С.

Изобретение относится к композиции катализатора; способу его приготовления и способу селективного окисления этана и/или этилена до уксусной кислоты. .

Изобретение относится к усовершенствованному способу получения (мет)акролеина и/или (мет)акриловой кислоты путем гетерогенного каталитического частичного окисления в газовой фазе, при котором находящийся в реакторе свежий неподвижный слой катализатора при температуре 100-600°С нагружают смесью загрузочного газа, которая наряду с, по меньшей мере, одним подлежащим частичному окислению С3/С4 органическим соединением-предшественником и окислителем - молекулярным кислородом содержит, по меньшей мере, один газ-разбавитель, причем процесс осуществляют после установки состава смеси загрузочного газа при неизменной конверсии органического соединения-предшественника и при неизменном составе смеси загрузочного газа сначала во входном периоде в течение 3-10 дней при нагрузке от 40 до 80% от более высокой конечной нагрузки, а затем при более высокой нагрузке засыпки катализатора смесью загрузочного газа, причем во входном периоде максимальное отклонение конверсии органического соединения-предшественника от арифметически усредненной по времени конверсии и максимальное отклонение объемной доли одного из компонентов смеси загрузочного газа, окислителя, органического соединения-предшественника и газа-разбавителя, от арифметически усредненной по времени объемной доли соответствующего компонента смеси загрузочного газа не должны превышать ±10% от соответствующего арифметического среднего значения.
Изобретение относится к усовершенствованному способу получения, по меньшей мере, одного продукта частичного окисления и/или аммокисления углеводорода, выбранного из группы, включающей акролеин, акриловую кислоту, метакролеин, метакриловую кислоту, акрилонитрил и метакрилонитрил, при котором, по меньшей мере, один насыщенный углеводород подвергают гетерогенно катализируемому дегидрированию в газовой фазе с получением газовой смеси, содержащей, по меньшей мере, один частично дегидрированный углеводород, содержащиеся в газовой смеси компоненты, отличные от насыщенного углеводорода и частично дегидрированного углеводорода, оставляют в ней или с получением дополнительной газовой смеси частично или полностью отделяют, и газовую смесь и/или дополнительную газовую смесь используют для получения дальнейшей газовой смеси, дополнительно содержащей молекулярный кислород и/или молекулярный кислород и аммиак, при этом дальнейшую газовую смесь подвергают, по меньшей мере, одному гетерогенно катализируемому частичному окислению и/или аммокислению содержащегося в газовой смеси и/или дополнительной газовой смеси, по меньшей мере, одного частично дегидрированного углеводорода, причем газовую смесь, дополнительную газовую смесь и/или дальнейшую газовую смесь перед, по меньшей мере, одним частичным гетерогенно катализируемым окислением и/или аммокислением подвергают, по меньшей мере, одному механическому разделению, направленному на отделение содержащихся в указанных газовых смесях частиц твердого вещества.

Изобретение относится к одностадийному способу парофазного окисления алкана, такого, как пропан, приводящему к получению ненасыщенной карбоновой кислоты, такой, как акриловая или метакриловая кислота, в присутствии смешанного металлооксидного катализатора и при избытке алкана относительно количества кислорода.

Изобретение относится к термическому способу разделения фракционной конденсацией смеси продукт-газа, полученного гетерогенным катализированным частичным окислением в газовой фазе пропена и/или пропана до акриловой кислоты, для отделения, по меньшей мере, одного массового потока, обогащенного акриловой кислотой, из смеси продукт-газа, содержащего акриловую кислоту, который включает непрерывную стационарную эксплуатацию, по меньшей мере, одного устройства для термического разделения, содержащего, по меньшей мере, одну эффективную разделительную камеру с ректификационной колонной имеющей массообменные тарелки в качестве встроенных разделительных элементов, в которую загружают смесь продукт-газа, содержащего акриловую кислоту, в качестве, по меньшей мере, одного массового потока, содержащего акриловую кислоту, и из которого выгружают, по меньшей мере, один массовый поток, содержащий акриловую кислоту, при условии, что массовый поток, который в общем загружают в эффективную разделительную камеру и получают путем сложения загружаемых в эффективную разделительную камеру отдельных массовых потоков, содержит X вес.% отличных от акриловой кислоты компонентов, массовый поток, который выгружают из эффективной разделительной камеры с наибольшей долей акриловой кислоты, содержит Y вес.% отличных от акриловой кислоты компонентов, соотношение X:Y составляет 5, эффективная разделительная камера, за исключением места загрузки и места выгрузки потока, ограничивается твердой фазой и содержит, кроме массообменных тарелок в качестве встроенных разделительных элементов в ректификационной колонне, по меньшей мере, один циркуляционный теплообменник, и общий объем камеры, заполненный жидкой фазой, составляет 1 м3, причем температура жидкой фазы, по меньшей мере, частично составляет 80°С, при разделении эффективной разделительной камеры на n индивидуальных объемных элементов, причем самая высокая и самая низкая температуры находящейся в отдельном объемном элементе жидкой фазы различаются не более чем на 2°С, а объемный элемент в эффективной разделительной камере является сплошным, общее время пребывания tобщ 20 ч,причем А=(Тi-То )/10°С, То=100°С, Ti=среднее арифметическое значение из самой высокой и самой низкой температуры объемного элемента i в жидкой фазе в °С, msi = общая масса акриловой кислоты, содержащаяся в объеме жидкой фазы объемного элемента i,mi = общее количество выгружаемого из объемного элемента i потока жидкофазной массы, и при условии, что объемные элементы i с содержащейся в них жидкофазной массой mi и в качестве объемных элементов с мертвой зоной также не включены в сумму всех объемных элементов i, как и объемные элементы i, которые не содержат жидкую фазу, и общее количество жидкой фазы, содержащейся в объемных элементах с мертвой зоной, составляет не более 5 вес.% от общего количества жидкой фазы, содержащейся в эффективной разделительной камере.

Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина реакцией газофазного каталитического окисления, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, имеющего такую конструкцию, что имеется множество реакционных труб, снабженных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, и снаружи указанных реакционных труб может течь теплоноситель для регулирования температуры реакции, в котором изменение по повышению температуры указанной реакции газофазного каталитического окисления проводится путем изменения температуры теплоносителя на впуске для регулирования температуры реакции, наряду с тем, что (1) изменение температуры теплоносителя на впуске для регулирования температуры реакции проводится не более чем на 2°С для каждой операции изменения как таковой, (2) когда операция изменения проводится непрерывно, операция изменения проводится так, что интервал времени от операции изменения, непосредственно предшествующей данной, составляет не менее 10 мин и, кроме того, разность между максимальным значением пиковой температуры реакции каталитического слоя реакционной трубы и температурой теплоносителя на впуске для регулирования температуры реакции составляет не менее 20°С.

Изобретение относится к композиции катализатора; способу его приготовления и способу селективного окисления этана и/или этилена до уксусной кислоты. .

Изобретение относится к усовершенствованному способу получения (мет)акролеина и/или (мет)акриловой кислоты путем гетерогенного каталитического частичного окисления в газовой фазе, при котором находящийся в реакторе свежий неподвижный слой катализатора при температуре 100-600°С нагружают смесью загрузочного газа, которая наряду с, по меньшей мере, одним подлежащим частичному окислению С3/С4 органическим соединением-предшественником и окислителем - молекулярным кислородом содержит, по меньшей мере, один газ-разбавитель, причем процесс осуществляют после установки состава смеси загрузочного газа при неизменной конверсии органического соединения-предшественника и при неизменном составе смеси загрузочного газа сначала во входном периоде в течение 3-10 дней при нагрузке от 40 до 80% от более высокой конечной нагрузки, а затем при более высокой нагрузке засыпки катализатора смесью загрузочного газа, причем во входном периоде максимальное отклонение конверсии органического соединения-предшественника от арифметически усредненной по времени конверсии и максимальное отклонение объемной доли одного из компонентов смеси загрузочного газа, окислителя, органического соединения-предшественника и газа-разбавителя, от арифметически усредненной по времени объемной доли соответствующего компонента смеси загрузочного газа не должны превышать ±10% от соответствующего арифметического среднего значения.
Изобретение относится к усовершенствованному способу получения, по меньшей мере, одного продукта частичного окисления и/или аммокисления углеводорода, выбранного из группы, включающей акролеин, акриловую кислоту, метакролеин, метакриловую кислоту, акрилонитрил и метакрилонитрил, при котором, по меньшей мере, один насыщенный углеводород подвергают гетерогенно катализируемому дегидрированию в газовой фазе с получением газовой смеси, содержащей, по меньшей мере, один частично дегидрированный углеводород, содержащиеся в газовой смеси компоненты, отличные от насыщенного углеводорода и частично дегидрированного углеводорода, оставляют в ней или с получением дополнительной газовой смеси частично или полностью отделяют, и газовую смесь и/или дополнительную газовую смесь используют для получения дальнейшей газовой смеси, дополнительно содержащей молекулярный кислород и/или молекулярный кислород и аммиак, при этом дальнейшую газовую смесь подвергают, по меньшей мере, одному гетерогенно катализируемому частичному окислению и/или аммокислению содержащегося в газовой смеси и/или дополнительной газовой смеси, по меньшей мере, одного частично дегидрированного углеводорода, причем газовую смесь, дополнительную газовую смесь и/или дальнейшую газовую смесь перед, по меньшей мере, одним частичным гетерогенно катализируемым окислением и/или аммокислением подвергают, по меньшей мере, одному механическому разделению, направленному на отделение содержащихся в указанных газовых смесях частиц твердого вещества.

Изобретение относится к смешанным металлоксидным катализаторам окисления и окислительного аммонилиза пропана и изобутана, способам их получения и применения. .

Изобретение относится к установке для получения (мет)акриловой кислоты, которая включает в себя: реактор для получения (мет)акриловой кислоты посредством реакции газофазного каталитического окисления одного, двух или большего количества исходных соединений, включающих пропан, пропилен, изобутилен и (мет)акролеин, в газовой смеси исходных веществ, содержащей одно, два или большее количество исходных соединений, включающих пропан, пропилен, изобутилен и (мет)акролеин, и кислорода; соединенный с реактором теплообменник, предназначенный для охлаждения реакционной газовой смеси, содержащей полученную (мет)акриловую кислоту; и соединенную с теплообменником абсорбционную башню, предназначенную для контактирования поглощающей жидкости, с целью абсорбции (мет)акриловой кислоты, и реакционной газовой смеси таким образом, что (мет)акриловая кислота из реакционной газовой смеси абсорбируется поглощающей жидкостью, при этом установка дополнительно содержит: обводную трубу, предназначенную для соединения реактора и абсорбционной башни без использования промежуточного теплообменника; и устройство, регулирующее скорость потока, предназначенное для регулирования скорости потока реакционной газовой смеси, которая течет по обводной трубе; где устройство, предназначенное для регулирования скорости потока, регулирует скорость потока реакционной газовой смеси, которая течет по обводной трубе, таким образом, чтобы обеспечить практически постоянную скорость подачи газовой смеси исходных веществ в реактор, или практически постоянное давление газовой смеси исходных веществ на входе в реактор.

Изобретение относится к усовершенствованному способу гетерогенного каталитического частичного прямого окисления пропана и/или изо-бутана до получения, по меньшей мере, одного из таких целевых продуктов, как акриловая кислота, метакриловая кислота, при котором на стадию реакции, которая за исключением входа для исходной смеси реакционного газа, в случае необходимости, других входов для вспомогательных газов, а также выхода для смеси продукт-газа, герметична для газа, подают пропан и/или изо-бутан, молекулярный кислород и исходную смесь реакционного газа, содержащую, по меньшей мере, один инертный газ-разбавитель, при входном давлении Р 1, на указанной стадии реакции путем подачи исходной смеси реакционного газа при повышенной температуре через находящийся в твердом агрегатном состоянии катализатор, содержащийся в исходной смеси реакционного газа пропан и/или изо-бутан, прямым способом частично окисляют до, по меньшей мере, одного целевого продукта, и смесь реакционного газа в виде содержащей, по меньшей мере, один целевой продукт смеси продукт-газа выводят из стадии реакции при выходном давленииР2 и при том же давлении Р2 подают на стадию переработки, которая, за исключением входа для смеси продукт-газа, в случае необходимости, других входов для вспомогательных газов, а также выхода для смеси остаточного продукт-газа, герметична для газа, на стадии переработки из смеси продукт-газа стадии реакции, содержащийся в ней, целевой продукт грубо отделяют в жидкую фазу, а оставшуюся при этом смесь остаточного продукт-газа, содержащую не только пропан и/или изо-бутан, а также, в случае необходимости, пропен и/или изо-бутен, выводят со стадии переработки при выходном давлении Р3, причем Р3 меньше Р1, содержащийся в смеси остаточного продукт-газа пропан и/или изо-бутан, возвращают на стадию реакции, где P1 выбирают таким образом, что Р3 больше или равно 1,5 бар, а смесь остаточного продукт-газа разделяют на две части одинакового состава, при этом одну часть выгружают, а другую часть отводят как циркуляционный газ и в качестве сжатого до входного давления Р1 компонента исходной смеси реакционного газа повторно подают на стадию реакции.

Изобретение относится к одностадийному способу парофазного окисления алкана, такого, как пропан, приводящему к получению ненасыщенной карбоновой кислоты, такой, как акриловая или метакриловая кислота, в присутствии смешанного металлооксидного катализатора и при избытке алкана относительно количества кислорода.
Наверх