Способ регулирования осевого усилия по ротору двухпоточной турбины

Изобретение относится к области турбостроения и может быть использовано при проектировании двухпоточных турбин. Способ регулирования осевого усилия по ротору двухпоточной турбины заключается в создании направленного усилия с помощью разгрузочных отверстий в дисках ротора, величина которого обеспечивает прижатие упорного гребня ротора к рабочим колодкам упорного подшипника. Разгрузочные отверстия применяют во всех дисках одного из потоков, а во втором потоке либо применяют диски без разгрузочных отверстий, либо применяют разгрузочные отверстия в диске последней ступени, либо применяют разгрузочные отверстия в дисках двух последних ступеней. Изобретение позволяет обеспечить надежность и простоту в эксплуатации двухпоточной турбины с регулированием осевого усилия. 1 ил.

 

Изобретение относится к области турбостроения и может быть использовано при проектировании двухпоточных турбин.

В двухпоточных турбинах рабочее тело подают в центр проточной части турбины, откуда оно растекается по двум симметричным потокам. Из-за симметрии проточной части силы, действующие на противоположные части ротора, взаимно уравновешиваются, и в итоге суммарная осевая сила равна нулю. С точки зрения потерь такая ситуация является благоприятной, однако положение ротора относительно статора становится неопределенным и неустойчивым, поскольку идеального уравновешивания невозможно добиться из-за значительных колебаний давления рабочего тела на входе в турбину и, особенно, на выходе из турбины в выхлопных патрубках. Поэтому фактически суммарная осевая сила изменяется некоторым случайным образом относительно нулевого среднего значения, вызывая осевые перемещения ротора в разные стороны. Эти смещения приводят к ударам упорного гребня ротора по колодкам упорного подшипника, что может привести к их разрушению. Отсюда возникает необходимость в регулировании осевого усилия.

Известен способ регулирования осевого усилия с помощью диска переднего концевого уплотнения турбины (думмиса) (Щегляев А.В. Паровые турбины. Теория теплового процесса и конструкции турбин: Учеб. для вузов: В 2 кн. Кн.1. - 6-е изд., перераб., доп. и подгот. к печати Б.М.Трояновским. - М.: Энергоатомиздат, 1993. с.364), увеличивая диаметр которого, можно создать уравновешивающее усилие, направленное навстречу потоку пара и уменьшающее нагрузку на упорный подшипник.

Недостатками диска переднего концевого уплотнения являются:

- увеличение диаметра концевого уплотнения приводит к увеличению протечки пара через уплотнение и уменьшению экономичности турбины;

- возникают конструктивные затруднения плотного горизонтального разъема цилиндра;

- уменьшение диаметра уплотнения приводит к повышению осевого усилия и, следовательно, к увеличению размеров упорного подшипника и механических потерь.

Известен способ регулирования осевого усилия МЭИ - ЛМЗ (Трояновский Б.М., Фрагин М.С. «Об осевых усилиях в многоцилиндровых паровых турбинах», ж. Теплоэнергетика №10, 1996, с.62), который позволяет отказаться от думмиса в двухпоточных конденсационных паровых турбинах путем перераспределения числа ступеней левого и правого потока, увеличив число ступеней в одном из потоков и таким образом повысив усилие в потоке. Такое предложение дает возможность отказаться от думмиса, но в случае двухпоточной однокорпусной турбины нарушит не только симметрию конструкции, но и режимные характеристики каждого из потоков турбины.

Известен способ регулирования осевого усилия в паровых турбинах с противоточными цилиндрами по патенту US 6892540 B1, МПК F01K 13/00, 2005. Регулирование достигается путем определения величины осевого усилия, с которым вал ротора действует на упорный подшипник, и снижением давления пара в одном из потоков, с помощью парогенератора и управляемых клапанов. Решение позволяет обеспечить нагрузку на упорный подшипник и при этом предотвратить его разрушение.

Рассмотренный способ является наиболее близким аналогом к заявленному способу регулирования осевого усилия в двухпоточных турбинах. Недостатками этого способа является то, что использование парогенератора и системы клапанов приводит к усложнению конструкции системы регулирования, снижению надежности и сложности в эксплуатации.

Указанные недостатки устраняются заявленным способом.

Заявленный способ позволяет с помощью применения разгрузочных отверстий в дисках ротора двухпоточной турбины достичь технического результата при минимально возможных механических потерях. Способ отличается надежностью и простотой в эксплуатации.

Задачей способа является регулирование осевого усилия по ротору двухпоточной турбины путем создания направленного усилия, величина которого обеспечивает прижатие упорного гребня ротора к рабочим колодкам упорного подшипника. Направленное усилие создают с помощью разгрузочных отверстий в дисках ротора, причем разгрузочные отверстия применяют во всех дисках одного из потоков, а во втором потоке либо применяют диски без разгрузочных отверстий, либо применяют разгрузочные отверстия в диске последней ступени, либо применяют разгрузочные отверстия в дисках двух последних ступеней.

Способ регулирования осевого усилия по ротору представлен на примере двухпоточной турбины, изображенной на чертеже.

Двухпоточная паровая турбина содержит корпус 1, ротор 2 с дисками 3, упорным подшипником 4 и двумя опорными подшипниками 5, расположенными на одном валу с ротором 2. Ротор симметричный, количество дисков в каждом потоке турбины одинаковое. Со стороны упорного подшипника 4 ротор 2 имеет упорный гребень 7, который служит для поджатия колодок упорного подшипника 4. Диски на роторе расположены симметрично, но количество дисков 3 с разгрузочными отверстиями 6 различно в каждом из потоков двухпоточной турбины с преобладанием их в одном из потоков. На чертеже представлен способ регулирования осевого усилия по ротору, когда разгрузочные отверстия применены во всех дисках потока А двухпоточной турбины, а в потоке Б разгрузочные отверстия применены в дисках двух последних ступеней.

Регулирование осевого усилия осуществляют следующим образом.

Подача рабочего тела в турбину осуществляется через паропровод 8 в центр проточной части, откуда он растекается по двум противоположным направлениям: поток А и поток Б. Рабочее тело, проходящее в потоке А, встречает меньшее сопротивление, чем то, которое проходит в потоке Б, ввиду того что в потоке А все диски ротора 2 имеют разгрузочные отверстия. Следовательно, перепад давления в потоке А будет меньше, чем перепад давления в потоке Б. Эта разница находится в прямой зависимости от количества и месторасположения разгрузочных отверстий.

Возможны различные варианты применения разгрузочных отверстий, например:

- все диски одного из потоков могут быть выполнены с разгрузочными отверстиями 6, а диски другого потока - без них;

- все диски одного из потоков могут быть выполнены с разгрузочными отверстиями 6, а во втором потоке один последний диск с разгрузочными отверстиями 6;

- все диски одного из потоков могут быть выполнены с разгрузочными отверстиями 6, а во втором потоке два последних диска с разгрузочными отверстиями 6.

При любом варианте применения разгрузочных отверстий производят расчет осевого усилия по каждому из потоков А и Б двухпоточной турбины. Осевые усилия расчитывают по двум вариантам: с разгрузочными отверстиями и без разгрузочных отверстий.

Определение количества разгрузочных отверстий и их размещение производится из двух параметров:

- несущая способность упорного подшипника;

- величина и направление усилия, создаваемого в результате погрешности изготовления и разности теплофизических процессов, происходящих на выхлопе потоков А и Б.

Разность осевых нагрузок в потоках А и Б турбины не должна превышать значения, обусловленного запасом прочности (несущая способность подшипника) на упорный подшипник 4, и быть не ниже номинального значения, необходимого для прижатия упорного гребня 7 ротора 2 к рабочим колодкам упорного подшипника 4.

Для примера, показанного на чертеже, вектор усилия потока А меньше вектора усилия потока Б. Сумма векторов потоков А и Б турбины дает вектор усилия по ротору 2.

Изобретение позволяет без диска переднего концевого уплотнения, перераспределения числа ступеней, перепуска пара обеспечить создание и поддержание осевой нагрузки на упорный подшипник в допустимых пределах. При этом благодаря применению разгрузочных отверстий в дисках ротора двухпоточной турбины технический результат достигается при минимально возможных механических потерях без снижения экономичности. Способ отличается надежностью и простотой в эксплуатации.

Способ регулирования осевого усилия по ротору двухпоточной турбины путем создания направленного усилия, величина которого обеспечивает прижатие упорного гребня ротора к рабочим колодкам упорного подшипника, отличающийся тем, что направленное усилие создают с помощью разгрузочных отверстий в дисках ротора, причем разгрузочные отверстия применяют во всех дисках одного из потоков, а во втором потоке либо применяют диски без разгрузочных отверстий, либо применяют разгрузочные отверстия в диске последней ступени, либо применяют разгрузочные отверстия в дисках двух последних ступеней.



 

Похожие патенты:

Изобретение относится к области теплоэнергетического машиностроения и может быть использовано при модернизации действующего оборудования и создании новых турбин.

Изобретение относится к области теплоэнергетики и может быть использовано при создании новых турбин и модернизации действующего оборудования. .

Изобретение относится к газотурбинным установкам наземного применения для механического привода и для привода электрогенератора. .

Изобретение относится к газотурбинным установкам наземного применения для механического привода и для привода электрогенератора. .

Изобретение относится к области авиадвигателестроения. .

Изобретение относится к турбине, в частности к паровой турбине, и к способу охлаждения одного или нескольких компонентов турбины. .

Изобретение относится к области турбоустановок и может быть использовано в мощных многоцилиндровых паровых турбинах, содержащих однопоточные цилиндр высокого давления (ЦВД) и цилиндр среднего давления (ЦСД).

Изобретение относится к турбиностроению и позволяет повысить экономичность парциальной турбинной степени. .

Изобретение относится к системе охлаждения газотурбинного двигателя (ГТД), а именно к охлаждению междисковой полости турбины воздухом, отбираемым из компрессора

Изобретение относится к области теплоэнергетического машиностроения и может быть использовано при модернизации действующего оборудования и создании новых турбин

Изобретение относится к турбиностроению и теплоэнергетике и может быть использовано при разработке и эксплуатации паровых турбин для парогазовых установок (ПГУ) бинарного типа с котлами-утилизаторами

Противоточная паровая турбина содержит паровую турбину высокого и низкого давления, общий роторный вал, первый паровой тракт, второй паровой тракт и средства направления первого парового тракта из паровой турбины высокого давления в противоположном направлении через паровую турбину низкого давления, содержащие переходную трубу. Переходная труба проходит от конца низкого давления паровой турбины высокого давления к концу высокого давления турбины низкого давления. Первый паровой тракт проходит в первом направлении через паровую турбину высокого давления. Второй паровой тракт проходит в противоположном направлении через паровую турбину низкого давления. Контрольно-измерительная аппаратура установлена на переходном паровом тракте между паровой турбиной высокого давления и паровой турбиной низкого давления и предназначена для текущего контроля параметров потока пара. Данные, получаемые от контрольно-измерительной аппаратуры, расположенной на переходном паровом тракте, содержат информацию о смешанном потоке, используемую для регулирования паровой турбины. Контрольно-измерительная аппаратура установлена на переходном паровом тракте между паровой турбиной высокого и низкого давления и предназначена для текущего контроля параметров потока пара. Обеспечивается ограничение осевого усилия, так что общая эффективность парового тракта может быть улучшена путем усиления реактивности ступени. 2 н. и 3 з.п. ф-лы, 4 ил.

Ступень диафрагмы паровой турбины, содержащая самовыравнивающийся разветвитель (110, 610, 710) потока. В одном варианте выполнения предложен разветвитель (120, 220, 320, 420, 520, 620, 720) потока паровой турбины, который имеет центральную часть (122) и две торцевые части (124, 224, 324, 424, 524) и содержит делитель (160) потока, расположенный в центральной части (122), и захват (162, 262, 562), проходящий, по существу, в радиальном наружном направлении и расположенный вблизи по меньшей мере одной из двух торцевых частей (124, 224, 324, 424, 524), причем указанный захват (162, 262, 562), проходящий по существу в радиальном наружном направлении, выполнен с обеспечением размещения в нем выступа (142) соплового аппарата (140), и паз (200), расположенный в разветвителе потока паровой турбины, выполненный с возможностью размещения уплотнения (210) для предотвращения протечки текучей среды через поверхности взаимодействия между разветвителем и выступом (142) соплового аппарата (140). Предотвращается формирование сварных швов, которые потенциально вносят деформацию в сопловые аппараты, ухудшая эксплуатационные характеристики паровой турбины, конструкция удерживает разветвитель потока внутри соплового аппарата после последующей установки соплового аппарата в турбину. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к области теплоэнергетического машиностроения и может быть использовано при модернизации действующего оборудования и создании новых турбин. Предложен двухпоточный цилиндр среднего давления паровой турбины, включающий наружный и внутренний корпусы, ротор с дисками и рабочими лопатками проточной части прямого и обратного потоков, направляющие лопатки первых ступеней прямого и обратного потоков, диафрагмы вторых ступеней прямого и обратного потоков, кольцевое экранирующее тело, установленное в центральной части внутреннего корпуса, и обойму, расположенную осесимметрично внутри экранирующего тела и снабженную кольцевыми камерами, соединенными между собой и имеющими отверстия на внутренней и торцевых стенках обоймы, трубопровод подачи охлаждающего пара от внешнего источника в обойму, при этом в диафрагмах вторых ступеней прямого и обратного потоков выполнены кольцевые камеры и установлены форсунки, в направляющих лопатках диафрагм вторых ступеней обоих потоков выполнены отверстия, причем кольцевые камеры в диафрагмах соединены посредством трубопроводов с внешним источником охлаждающего пара, кроме этого в кольцевом экранирующем теле выполнены отверстия для перепуска пара, а трубопровод подачи охлаждающего пара от внешнего источника в обойму установлен в дополнительный защитный трубопровод, закрепленный во внутреннем корпусе. Заявленное техническое решение позволяет повысить надежность цилиндра турбины за счет повышения эффективности охлаждения дисков первых ступеней и центральной части ротора. Заявленная конструкция системы охлаждения, при перекосах давления за направляющими лопатками первых ступеней между прямым и обратным потоками до 100 КПа, позволяет надежно охлаждать центральную часть ротора двухпоточных цилиндров и наиболее напряженные диски первых ступеней обоих потоков со стороны паровпуска и со стороны вторых ступеней, при этом снижается ползучесть металла, увеличивается его длительная прочность, в результате чего продлевается ресурс работы ротора. Установка дополнительного трубопровода также позволяет существенно повысить эффективность охлаждения ротора за счет эффекта экранирования, получаемого при установке трубопровода подачи охлаждающего пара в дополнительный защитный трубопровод. 1 ил.
Наверх