Комбинированный атомный форсажный авиационный двигатель

Комбинированный атомный форсажный авиационный двигатель содержит двухкаскадный газотурбинный двигатель с внутренним и внешним валами и компрессорами низкого и высокого давления, камерой сгорания, турбиной с системой охлаждения и сверхзвуковым реактивным соплом. За турбиной на внутреннем валу двигателя установлен двигатель Стирлинга, который содержит, по меньшей мере, один рабочий цилиндр, установленный за турбиной по потоку и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку. Перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором. Каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость. Вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода и теплообменник - охладитель с полостью между компрессорами низкого и высокого давлений. Выход из охлаждающей полости соединен с полостью за двигателем Стирлинга. Между двигателем Стирлинга и сверхзвуковым реактивным соплом выполнена форсажная камера, внутри которой установлен форсажный теплообменник, соединенный трубопроводами рециркуляции, в одном из которых установлен насос рециркуляции, с ядерным реактором. Изобретение направлено на повышение КПД с одновременным снижением его веса, стоимости и повышении надежности. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к авиадвигателестроению.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение №2002115896, содержащий ГТД и ракетный двигатель.

Недостаток - очень большой расход топлива, потребляемый ракетным двигателем.

Известен авиационный ГТД по патенту РФ №2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостаток - низкий КПД и, как следствие, большой удельный расход топлива.

Задача создания изобретения - значительное повышение КПД двигателя в широком диапазоне режимов работы.

Решение указанной задачи достигнуто в комбинированном атомном форсажном авиационном двигателе, содержащем газотурбинный двигатель с внутренним и внешним валами и компрессорами низкого и высокого давления, камерой сгорания, к которой подведен топливный трубопровод от топливного насоса, турбиной и сверхзвуковым реактивным соплом, отличающийся тем, что за турбиной на внутреннем валу двигателя установлен двигатель Стерлинга, который содержит, по меньшей мере, один рабочий цилиндр, установленный за турбиной по потоку и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку, при этом перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором, каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость, вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода с полостью между компрессорами низкого и высокого давлений, выход из охлаждающей полости соединен с полостью внутри реактивного сопла, между двигателем Стерлинга и сверхзвуковым реактивным соплом выполнена форсажная камера, внутри которой установлен форсажный теплообменник, соединенный трубопроводами рециркуляции, в одном из которых установлен насос рециркуляции с форсажным теплообменником. Все расширительные цилиндры частично или полностью установлены внутри обтекателя реактивного сопла.

Предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, что подтверждается проведенными патентными исследованиями. Для реализации изобретения достаточно применения известных узлов и деталей, ранее разработанных и реализованных в конструкции газотурбинных двигателей и в машиностроении.

Сущность изобретения поясняется на фиг.1…3, где:

на фиг.1 приведена схема авиационного двигателя,

на фиг.2 приведена схема двигателя Стирлинга,

на фиг.3 приведен разрез А-А.

Предложенное техническое решение (фиг.1) содержит газотурбинный двигатель ГТД 1, который выполнен двухвальным и содержит внутренний вал 2 и внешний вал 3, компрессор, состоящий в свою очередь из компрессор низкого давления 4 и компрессор высокого давления 5. К выходу из компрессора высокого давления 5 трубопроводом 6 подключен теплообменник-охладитель 7, выход из которого соединен с системой охлаждения турбины, описанной далее. За компрессором высокого давления 5 расположены камера сгорания 8, турбина 9, содержащая в свою очередь сопловой аппарат 10 и рабочее колесо 11 и система охлаждения турбины с входным коллектором системы охлаждения 12 турбины 9. Коллектор системы охлаждения 12 турбины 9 сообщается с внутренними полостями соплового аппарата 10 и рабочего колеса 11 и установлен над сопловым аппаратом 10. Газотурбинный двигатель 1 содержит систему топливоподачи с топливным насосом 13, топливный трубопроводы 14, подсоединенный к камере сгорания 8 Далее по потоку установлена форсажная камера 15, сверхзвуковое реактивное сопло 16 с обтекателем конической формы 17 внутри него.

Отличительной особенностью силовой установки является наличие двигателя Стирлинга 18 за турбиной 9, т.е. за ее рабочим колесом 11.

Двигатель Стирлинга 18 состоит из двух частей: группы рабочих цилиндров 19 и группы расширительных цилиндров 20, которые соединены трубопроводами 21. Группу расширительных цилиндров 20 предпочтительно установить вне газового тракта ГТД, например, полностью или частично в обтекателе 16.

На фиг.2 и 3 приведена схема одного из вариантов исполнения двигателя Стирлинга 18, который содержит группу рабочих цилиндров 19, имеющих оребрение 22 с установленным внутри каждого из них в полости «Б» рабочим поршнем 23, который шатуном 24 соединен с валом двигателя 8, и группу расширительных цилиндров 20 с установленным внутри каждого из них в полости «В» вытеснительным поршнем 25. Каждый расширительный цилиндр 20 оборудован снаружи кожухом 26, образующим полость «Г» для охлаждения расширительного цилиндра 20. Вытеснительный поршень 25 соединен шатуном 27 с валом двигателя 8. Трубопровод 21 соединяет полости «Б» и «В» для перетекания рабочего тела из рабочего цилиндра 19 в расширительный цилиндр 20. К полости «Г» подсоединены выходы воздухоподводящих трубопроводов 28, а выхлопные трубопроводы 29 соединяют полость «Г» с внутренней полостью «Д» реактивного сопла 15 (фиг.1). Входы воздухоподводящих трубопроводов 28 через регулятор расхода 29, имеющий привод 30, соединены с полостью за компрессором низкого давления 5.

Перед рабочим цилиндром 19 (рабочими цилиндрами 19) установлен теплообменник 31, который трубопроводами рециркуляции 32 и 33, в одном из которых установлен насос рециркуляции 34, соединен с ядерным реактором 35. Внутри форсажной камеры 15 установлен форсажный теплообменник 36, который трубопроводами рециркуляции 37 и 38, в одном из которых установлен насос рециркуляции 39, соединен с ядерным реактором 35. Авиационный двигатель оборудован блоком управления 40 и датчиками частоты вращения внутреннего и внешнего валов, соответственно, 41 и 42. С блоком управления 40 электрическими связями 43 соединены датчики частоты вращения 41 и 42 и насос 13 и привод 30. Внутри обтакателя 16 установлен привод обтекателя 44, соединенный электрическими связями 43 с блоком управления 40.

При работе при помощи стартера (на фиг.1…3 не показан) запускается ГТД 1, при этом включается насос 13, который подает топливо по топливному трубопроводу 14 в камеру сгорания 8.

Топливо воспламеняется при помощи электрозапальника (на фиг.1…3 не показано). Выхлопные газы проходят через турбину 9. Рабочее колесо турбины 10 с внешним валом 3 газотурбинного двигателя 1 раскручиваются, т.е ГТД 1 запускается.

Двигатель Стирлинга 18 запускается значительно позже из-за его инерционности. Шатуны 24 и 27 и поршни 23 и 25 двигателя Стирлинга приводятся в действие при помощи внутреннего вала 2 газотурбинного двигателя 1 от компрессора первого каскада 4, который раскручивается в режиме авторотации воздухом, проходящим через него. Механизм преобразования вращательного движения в возвратно-поступательное (этот механизм на фиг.1…3 детально не показан, но он может быть выполнен в виде коленчатого вала с шатунами) преобразует вращательное движение внутреннего вала 2 в возвратно-поступательное движение поршней 23 и 25 двигателя Стирлинга 18. Выхлопные газы нагревают через оребрение 22 рабочее тело внутри рабочих цилиндров 19. Для работы двигателя Стирлинга достаточно иметь разницу температур на двух группах цилиндров 19 и 20. Первоначально двигатель Стирлинга работает принудительно и не выдает мощность, а, наоборот, ее потребляет. Примерно через 5…10 мин по мере прогрева рабочего тела внутри рабочих цилиндров 19 двигателя Стирлинга он выходит на расчетный режим работы. Медленный выход двигателя Стирлинга на расчетный режим работы является одним из его недостатков, но высокий КПД, надежность и хорошие экологические свойства в сочетании с ГТД, имеющим хорошие характеристики запуска, делает предложенный двигатель чрезвычайно интересным по всем показателям одновременно, т.к. позволит частично утилизировать тепло в реактивном сопле и применить вместо 4…5 ступеней турбины только одну ступень.

Воздух, отбираемый из-за компрессора низкого давления 4, по трубопроводу 6 поступает в теплообменник-охладитель 7, где охлаждается и поступает во входной коллектор системы охлаждения 12 турбины 9. Это позволило увеличить температуру газов перед турбиной и повысить его КПД. Воздух, отбираемый воздухоподводящим трубопроводом 28, проходит теплообменник 7, регулятор расхода 29 и поступает в полость «Г» внутри кожуха 26 для охлаждения расширительного (расширительных) цилиндров 20.

После выхода на режим газотурбинной части авиационного двигателя запускают ядерный реактор 35, включают насос теплоносителя 34 и теплоноситель по трубопроводу рециркуляции 33 подается в теплообменник 31, где подогревает продукты сгорания на входе в двигатель Стирлинга 18. Мощность двигателя увеличивается примерно в 2 раза, также возрастает его экономичность за счет увеличения температуры, при которой подводится тепло в цикле.

Второй особенностью комбинированного атомного авиационного двигателя является наличие его системы регулирования при помощи регулятора расхода. Регулирование расхода теплоносителя, подаваемого в теплообменник 31 посредством насоса теплоносителя 34, недостаточно эффективно и приводит к ухудшению экомичности двигателя в целом из-за подвода тепла при относительно низком давлении и низкой эффективности расширительных цилиндров 20, в которые поступает небольшой расход воздуха, имеющий достаточно высокую температуру. Регулятором расхода 29 можно увеличить расход охлаждающего воздуха, поступающего на охлаждение расширительных цилиндров 20. Регулирование режима работы двигателя Стирлинга необходимо для того, чтобы обеспечить его работу вместе с первым каскадом компрессора в режиме оптимальных КПД (на расчетном режиме). Это необходимо потому, что в отличие от стационарных газотурбинных установок авиационные двигатели эксплуатируются в широком диапазоне температур окружающего воздуха (от +40 до -76°С) и при давлении от 1 кгс/см2 практически до вакуума на высоте полета самолета от 10000 м до 25000 м.

Для значительного увеличения силы тяги (примерно в 2,0…2,5 раза насосом теплоносителя подают теплоноситель в форсажный теплообменник 36, который подогревает продукты сгорания перед сверхзвуковым реактивным соплом до 1500…2200°С.

Таким образом, двигатель может работать как минимум в четырех режимах:

- ядерный реактор не работает, топливная система работает;

- работает только ядерный реактор,

- работают ядерный реактор и топливная система одновременно,

- работает ядерный реактор, топливная система и форсажный теплообменник 36.

В результате использования утилизации тепла выхлопных газов в двигателе Стирлинга КПД авиационного двигателя возрастает примерно на 10…17%.

Применение изобретения позволило:

1. Получить значительную силу тяги на форсажном режиме.

2. Значительно повысить мощность и КПД авиационного двигателя за счет использования для получения энергии на валу нагрузки кроме ГТД двигателя Стирлинга, ядерного реактора и регулирования работы двигателя Стирлинга, для обеспечения его работы в режиме максимальных КПД и согласования работы газотурбинной части комбинированного двигателя и двигателя Стирлинга.

3. Согласовать работу ГТД и двигателя Стирлинга, имеющих разную инерционность, за счет применения двухкаскадного двухвального ГТД.

4. Обеспечить регулирование режима работы двигателя Стирлинга двумя способами: подачей теплоносителя в теплообменник 31 и управлением расходом охлаждающего воздуха регулятором 29.

5. Повысить надежность двигателя за счет его работы в четырех режимах, в зависимости от использования ядерного реактора, топливной системы и форсажной камеры, что позволяет при отказе одной из систем сохранить около 50% максимально возможной тяги двигателя и продолжить длительный полет и посадить самолет.

6. Облегчить запуск комбинированного авиационного двигателя за счет применения двухвальной схемы и запуска только одного, например, второго, каскада.

7. Уменьшить количество ступеней турбины за счет того, что их функцию берет на себя в основном двигатель Стирлинга.

8. Снизить эмиссию токсичных веществ в атмосферу за счет того, что двигатель Стирлинга имеет значительно лучшие экологические показатели по сравнению с другими типами двигателей.

9. Снизить стоимость авиационного двигателя за счет уменьшения количества дорогостоящих ступеней турбины, лопатки и диски которых выполняются из жаропрочных сплавов, и упрощения схемы охлаждения турбины.

10. Уменьшить вес авиационного двигателя, что особенно важно в авиации.

11. Повысить надежность авиационного двигателя за счет отказа от нескольких ступеней турбины, рабочие лопатки которых являются самыми нагруженными деталями двигателя, ограничивающими его ресурс и в первую очередь влияющие на надежность двигателя, самолета и безопасность авиаперевозок.

1. Комбинированный атомный форсажный авиационный двигатель, содержащий двухкаскадный газотурбинный двигатель с внутренним и внешним валами и компрессорами низкого и высокого давления, камерой сгорания, к которой подведен топливный трубопровод от топливного насоса, турбиной, имеющей систему охлаждения, и сверхзвуковым реактивным соплом, отличающийся тем, что за турбиной на внутреннем валу двигателя установлен двигатель Стирлинга, который содержит, по меньшей мере, один рабочий цилиндр, установленный за турбиной по потоку, и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку, при этом перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором, каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость, вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода и теплообменник-охладитель с полостью между компрессорами низкого и высокого давлений, выход из охлаждающей полости соединен с полостью за двигателем Стирлинга, между двигателем Стирлинга и сверхзвуковым реактивным соплом выполнена форсажная камера, внутри которой установлен форсажный теплообменник, соединенный трубопроводами рециркуляции, в одном из которых установлен насос рециркуляции, с ядерным реактором.

2. Комбинированный атомный форсажный авиационный двигатель по п.1, отличающийся тем, что второй вход теплообменника-охладителя соединен с полостью за компрессором высокого давления, а второй выход соединен с системой охлаждения турбины.



 

Похожие патенты:

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Изобретение относится к газотурбинным двигателям. .

Изобретение относится к атомной энергетике, теплоэнергетике и энергомашиностроению. .

Изобретение относится к теплоэнергетике, энергомашиностроению и атомной энергетике. .

Изобретение относится к энергетике по выработке электроэнергии с использованием солнечной лучистой энергии

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применена ядерная силовая установка Известен авиационный комбинированный двигатель по заявке РФ на изобретение 2002115896, содержащий ГТД и ракетный двигатель

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применен ядерный реактор

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применен ядерный реактор

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применен ядерный реактор

Изобретение относится к области теплоэнергетики, энергомашиностроения и атомной энергетики и может быть использовано в конструкциях установок, преобразующих тепло в механическую или электрическую энергию

Солнечный коллектор с турбиной или турбокомпрессором для приема солнечного излучения содержит коллектор (1) в форме конусообразной спирали, содержащий трубки круглого или квадратного сечения, причем радиус предыдущего витка трубок больше последующего, так что тень предыдущего витка не падает на последующий, и витки плотно прилегают друг к другу без зазоров между ними вплоть до последнего витка, соединенного с трубкой, питающей ведущую турбину (4); и содержит вход (6) для поступления сжатого воздуха из компрессора (16), содержит защиту указанного коллектора (1), покрывающую его поверхность и поверхность трубок (18) и различные инжекторы (30) для производства тепла посредством инжекции газов, содержит ведущую турбину (4), на которую поступает воздух, разогретый в коллекторе (1) энергией солнечного излучения или другими видами топлива, указанная турбина содержит теплообменник, отделяющий ведущую турбину (4) от компрессора (16), содержит промежуточную секцию, разделяющую компрессор (16) и ведущую турбину (4), с центральным проходом для размещения оси (9) в полости воздухонепроницаемой трубки, по которой лопастями (22) компрессора (16) направляется поток воздуха из окружающей среды наружной температуры по направлению к лопаткам ведущей турбины (4), охлаждая их, а центральными лопастями (21) ведущей турбины воздух выбрасывается наружу, где он смешивается с потоком воздуха, продвигающимся на выход (8). Изобретение должно обеспечить получение кинетической энергии, используя солнечное излучение, отраженное с помощью гелиостатов или параболы, предусматривая возможность работы на другом топливе при отсутствии солнечного излучения. 2 з.п. ф-лы, 6 ил.

Комплементарная система подачи тепловой энергии с использованием солнечной энергии и биомассы принадлежит к области использования чистой энергии. Система содержит устройство, концентрирующее солнечные лучи, емкость (1) для хранения солнечного тепла, энергоустановку на биомассе, устройство охлаждения и замораживания для охлаждения и систему нагревания воды для центрального нагревания. Устройство, концентрирующее солнечные лучи, соединено трубопроводом с емкостью (1), впуск первого выпускного теплообменника (В1) емкости (1) соединен с выпуском насоса питательной воды бойлера на биомассе, выпуск первого теплообменника (В1) соединен с впуском системы питательной воды бойлера на биомассе. Впускной трубопровод второго теплообменника (В2) емкости (1) соединен с выпускным трубопроводом водоочистительной установки, и выпуск второго теплообменника (В2) соединен с впускным трубопроводом тепловой энергии устройства охлаждения и замораживания. Охлаждающая вода устройства охлаждения и замораживания соединена с емкостью горячей воды водонагревательной системы, чтобы осуществлять нагревание для пользователей. Емкость (1) представляет собой емкость для хранения тепла с двумя или с тремя теплоносителями и двумя циклами, а теплоносителем в ней является теплопроводящее масло или расплавленная соль. 8 з.п. ф-лы, 3 ил.
Наверх