Магнитоуправляемый герметизированный контакт

Изобретение относится к области электротехники, в частности к конструкции магнитоуправляемых герметизированных контактов, и может быть использовано в промышленном производстве этих приборов. Техническим результатом изобретения является повышение стабильности его работы в разных режимах в течение длительного времени, упрощение технологии создания контакта, исключение влияния попадания посторонних микронаночастиц на свойства контакта, в ряде случаев исключение использования драгметаллов в контактном покрытии и исключение «грязных» и сложных гальванических технологий осаждения покрытий. Технический результат достигается за счет того, что в магнитоуправляемом герметизированном контакте с ферромагнитными контакт-деталями, расположенными в стеклянном корпусе, на контактирующей поверхности контакт-деталей выполнены нано- и микровыступы с размерами 50 нм-19 мкм. 5 ил., 1 табл.

 

Изобретение относится к области электротехники, в частности к конструкции магнитоуправляемых герметизированных контактов, и может быть использовано в промышленном производстве этих приборов.

Известна конструкция магнитоуправляемого герметизированного контакта (геркона) [1], в котором две ферромагнитные контакт-детали помещены в герметизируемый стеклянный корпус. На поверхности контакт-деталей нанесено контактное покрытие из молибдена. Покрытия создают для повышения эрозионной устойчивости геркона и для снижения контактного сопротивления пары контакт-деталей.

Однако в процессе работы геркона, особенно при сильных токах, возникает значительная эрозия, в результате которой материалы контактного покрытия сплавляются с материалом основы (сплав никеля с железом), свойства геркона ухудшаются и начинают определяться свойствами вновь полученного сплава (железо, никель и молибден). Всегда сплавы сложного состава имеют худшие параметры, в частности, по контактному сопротивлению, чем однородные материалы [4].

Известен магнитоуправляемый герметизированный контакт [2], состоящий из корпуса и контакт-деталей, в котором на контактирующей поверхности контакт-деталей сформировано множество выступов, расположеных таким образом, что выступы одной контакт-детали окружают выступы другой контакт-детали. Такой магнитоуправляемый герметизированный контакт требует регулировки положения контактов, что представляет определенные трудности при массовом производстве, а также требуется специальная технология изготовления выступов и соответствующих им концов другого контакта.

Известна конструкция магнитоуправляемого герметизированного контакта (геркона) [3], в котором две ферромагнитные контакт-детали помещены в герметизируемый стеклянный корпус. На поверхности контакт-детали нанесено многослойное покрытие (медь-никель, золото, рутений).

Однако в напряженных условиях работы геркона материалы контактного покрытия могут сплавляться между собой и с материалами основы. Всегда сплавы сложного состава имеют худшие параметры, в частности, по сопротивлению, чем однородные материалы. Также коррозия всегда более интенсивно происходит на сплавах, чем на чистых металлах по отдельности. Иногда покрытие может отслаиваться. Контактирование двух контакт-деталей всегда осуществляется в отдельных точках на некоторых участках, так как невозможно изготовить и подобрать конструкцию так, чтобы контактирование осуществлялось по всей контактной поверхности. Фактически контактирующие точки имеются в ограниченном количестве и их положение меняется в процессе работы геркона. При попадании посторонних диэлектрических микронано- нано- и микрочастиц в область контакта между двумя контактирующими плоскостями переходное сопротивление геркона увеличивается, так как сразу же между контактирующими плоскостями образуется некоторый разрыв и количество контактирующих точек может значительно снижаться. В случае покрытия из тугоплавких металлов отсутствует достаточная пластичность, необходимая для прирабатывания двух контакт-деталей в процессе тренировки.

Задачей настоящего изобретения является создание необходимых свойств контактирующих поверхностей геркона, повышение стабильности его работы в разных режимах в течение длительного времени, упрощение технологии создания контакта, исключение влияния попадания посторонних микронано- нано- и микрочастиц на свойства контакта, в ряде случаев исключение использования драгметаллов и исключение довольно «грязных» и сложных гальванических технологий осаждения покрытий.

Предлагается магнитоуправляемый герметизированный контакт, в котором ферромагнитные контакт-детали помещены в стеклянный корпус, отличающийся тем, что на контактирующей поверхности контакт-деталей расположены нано- и микровыступы с размерами 50 нм…19 мкм.

Наличие на контактирующей поверхности контакт-деталей специально созданных микронано- нано-, микровыступов позволяет решать несколько необходимых в работе геркона задач:

- создавать на поверхности контакт деталей большое количество контактирующих точек (значительно большее, чем образуется при работе геркона с применяемыми в настоящее время покрытиями),

- исключить влияние попадания посторонних диэлектрических нано- и микрочастиц на электрическое сопротивление геркона (так как размеры микрочастиц соизмеримы с размерами областей контактирования, то они не могут удержаться на контактирующих точках, а оказываются между контактирующими выступами,

- микронано- нано- и микрочастицы в силу своих размеров обладают большей пластичностью, чем любой компактный металл, и тем самым имеют возможность в процессе тренировки увеличить количество контактирующих точек и снизить контактное сопротивление,

- наличие большого количества потенциально возможных контактирующих точек позволяет получить долговременную стабильность геркона,

- в некоторых конструкциях герконов возможно исключение применения драгметаллов.

Микронано- нано- и микровыступы на поверхности контакт-детали можно создать несколькими способами:

- с помощью оптической, рентгеновской или электронной литографии (аналогично изделиям микронаноэлектроники) [5],

- при пропускании электрических импульсов через микронано- нано- и микропорошок металла, помещаемого на поверхность контактов (типа контактной микронаносварки),

- при формировании при распылении металла при определенном потоке атомов и кластеров в электрических полях или при подаче порошка металла в плазмотрон,

- другими способами.

Диапазон предлагаемых размеров микронано- нано- и микровыступов определяется исходя из следующих условий:

- выступы размерами менее 50 нм могут исчезнуть полностью в процессе явлений эрозии при работе контакт-деталей и протекании токов,

- верхний размер более 19 мкм нецелесообразен, так как эти размеры соизмеримы с размерами зазора между контактирующими поверхностями.

Для создания микронано- нано- и микровыступов могут быть использованы как ферромагнитные материалы, аналогичные материалам контакт-деталей, а также и любые контактные материалы.

Оба из этих вариантов имеют свои достоинства и недостатки.

Материалы, аналогичные материалу ферромагнитной контакт-детали, обеспечат более стабильную работу при сильных токах и более длительное время за счет стабильности состава контакт-деталей.

Специальные контактные материалы (например, золото) позволят получить лучшие характеристики контактов с микронано- нано- и микровыступами при малых токах.

Предлагаемая конструкция представлена на фиг.1,

где 1 - стеклянный корпус, 2, 3 - ферромагнитные контакт-детали,

4 - микронано- нано- и микровыступы.

Работа устройства. При наложении магнитного поля контакты замыкаются и геркон проводит электрический ток. Сформированные на поверхности контактов микронано- нано- и микровыступы обеспечивают работу геркона. В процессе работы одни микронано- нано- и микровыступы уничтожаются, преобразуются, а другие начинают проводить ток.

На фиг.2-3 представлены изображения контактирующей поверхности контакт-деталей герконов, полученные методом атомно-силовой микроскопии (АСМ) на приборе Р4-СЗМ (сканирующий зондовый микроскоп производства российской компании НТ-МДТ, г.Зеленоград).

АСМ-изображения контактирующих поверхностей получены в комнатной атмосфере в контактном режиме в диапазоне сил взаимодействия с изучаемой контактной поверхностью 10-40 нН. Использовались микроконсоли (контилеверы) из кремния Si и нитридов кремния Si3N4 треугольной формы с пирамидальными иглами, имеющими радиус закругления вершин пирамид менее 40 нм.

Использовался АСМ-метод постоянной силы, при котором величина изгиба кантилевера поддерживалась в процессе сканирования постоянной при помощи системы обратной связи. Таким образом, вертикальные смещения сканера отражали рельеф поверхности исследуемого образца. (При работе в контактном методе изгиб кантивелера отражает отталкивающую силу и используется непосредственно для отображения рельефа поверхности.)

На фиг.2 показано АСМ-изображение контактирующей поверхности контакт-деталей геркона, размер поля 7×6 мкм, на котором проявляется наличие межзеренных границ и нанорельефа. Хорошо видно чередование темных и светлых округлой формы наноразмерных областей, что говорит об изменении высоты поверхностного рельефа. При этом высота и диаметр наблюдаемых на изображении поверхности выступов не превышают 100 нм.

На фиг.3 показано АСМ-изображение контактирующей поверхности контакт-деталей геркона, размер поля 2×2 мкм.

Дополнительную и более точную информацию о полученном рельефе дают профиль АСМ-изображения и статистический анализ распределения высоты рельефа, представленные на фиг.4 и 5.

На фиг.4 показан профиль АСМ-изображения по Х-координате вдоль линии 175 (см. фиг.3).

На фиг.5 показано статистическое распределение высоты рельефа на участке контактирующей поверхности контакт-деталей геркона.

Специально сформированные микронано- нано- и микровыступы обеспечивают возможность работы магнитоуправляемого герметизированного контакта в течение более длительного времени и более стабильные параметры в процессе работы.

Результаты совместных коммутационных испытаний экспериментальных образцов замыкающих герконов с длиной баллона 14 мм и серийных герконов представлены в таблице 1.

Исходя из результатов сравнительных испытаний у экспериментальных герконов наблюдаются повышение выхода годных и большая стабильность работы.

Источники информации

1. Патент РФ на полезную модель №50714, МПК Н01/02, 1/66, опубл. 20.01.2006.

2. Патент США 5570072, Н01Н 1/66, опубл. 29.10.1996 г.

3. Патент РФ на изобретение №2279149, МПК Н01Н 1/02, 1/66, опубл. 27.06.2006 г. бюл. №18.

4. Электрические и магнитные свойства металлов и сплавов / О.А.Шматко, Ю.В.Усов. - Киев: Наукова думка, 1987 г., 583 с.

5. Оборудование полупроводникового производства / П.Н.Масленников, К.А.Лаврентьев, А.Д.Гингис и др. - М.: Радио и связь, 1981, 336 с. (стр.127).

Магнитоуправляемый герметизированный контакт, в котором ферромагнитные контакт-детали помещены в стеклянный корпус, отличающийся тем, что на контактирующей поверхности контакт-деталей расположены нано- и микровыступы с размерами 50 нм…19 мкм.



 

Похожие патенты:

Изобретение относится к электротехнике, и может быть использовано в устройствах автоматики для коммутации электрических цепей с увеличенным в 1,5-2 раза уровнем максимально допустимой мощности.
Изобретение относится к области электротехники и предназначено для нанесения контактного покрытия на рабочие части контакт-деталей различного типа герконов. .

Изобретение относится к электротехнике, в частности к магнитоуправляемым герметизированным контактам (герконам), и может быть использовано при разработке радиотехнической аппаратуры для коммутации высокочастотных полосковых линий или для согласования коаксиальных кабелей с волновым сопротивлением 75 или 50 Ом.

Изобретение относится к электротехнике и предназначено для нанесения контактного покрытия на рабочие части контакт-деталей мощных герконов. .

Изобретение относится к области электротехники и может быть использовано при изготовлении логических схем управления устройств автоматики. .

Изобретение относится к электротехнике, в частности к новому классу замыкающего магнитоуправляемого герметизированного контакта (геркона), и может быть использовано в качестве датчика порога срабатывания, например подушки безопасности автомобиля от внешних ударных нагрузок.

Изобретение относится к электротехнике, в частности к магнитоуправляемым герметизированным контактам. .

Изобретение относится к электротехнике и может быть использовано в автоматике для коммутации электрических цепей. .

Изобретение относится к электротехнике и может найти применение в различных коммутационных устройствах. .

Изобретение относится к электротехнике и может найти применение в коммутационных различных устройствах. .

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия нестационарных температур и повышенных виброускорений.

Изобретение относится к измерительной технике и может быть использовано для измерения давления в условиях нестационарных температур (термоудара) измеряемой среды.

Изобретение относится к нанотехнологии и металлоуглеродным наноструктурам, в частности к металлоуглеродным нанопокрытиям, стойким к окислению и коррозии. .

Изобретение относится к области углеродных материалов нанотрубчатой структуры и способу их приготовления. .

Изобретение относится к порошковой металлургии, в частности к получению высококомпактных непроводящих магнитных наноматериалов (наномагнитокерамики). .

Изобретение относится к производству водорода и углеродных материалов нановолокнистой структуры из углеводородов. .
Изобретение относится к области получения наночастиц серебра, распределенных в воде, содержащей органические и неорганические стабилизаторы, и может быть использовано в производстве медицинских, ветеринарных и косметических препаратов.

Изобретение относится к технологии получения наночастиц благородных металлов из водных растворов их прекурсоров, таких как серебро, золото, платина. .

Изобретение относится к электролитическим способам получения неорганических соединений, в частности соединений неодима. .

Изобретение относится к приборам вакуумной микроэлектроники, в частности к полевым эмиссионным элементам с углеродными нанотрубками, используемыми в качестве катодов: к триодам, к диодам и к устройствам на их основе, полевым эмиссионным дисплеям, вакуумным микроэлектронным переключателям токов и др
Наверх