Дипольный нанолазер

Дипольный нанолазер для генерации когерентного электромагнитного излучения включает двухуровневую систему в форме квантовой точки и резонатор для когерентного электромагнитного излучения. Резонатор, включающий металлическую или полупроводниковую наночастицу и электроконтактные пластины, содержит дополнительно еще одну наночастицу, которая расположена от указанной наночастицы и от указанной квантовой точки на расстояниях, меньших длины волны когерентного электромагнитного излучения, для генерации которого предназначен указанный нанолазер. Обе указанные наночастицы способны к возбуждению дипольной моды колебаний в противофазе на частоте указанного когерентного электромагнитного излучения. Технический результат заключается в повышении добротности резонатора дипольного нанолазера. 1 ил.

 

Изобретение относится к области электронной техники, в частности к конструкции и работе полупроводниковых лазеров, и может быть использовано в системах записи, считывания и обработки информации.

Уровень техники

Известен способ генерации когерентного электромагнитного излучения (далее КЭМИ) [1], включающий накачку энергии в помещенную в резонатор для электромагнитного поля активную среду до уровня, когда возникает инверсная заселенность энергетических состояний активной среды, т.е. населенность ее состояний с большей энергией становится больше, чем населенность состояний с меньшей энергией, и при достижении определенного (порогового) значения населености верхнего энергетического состояния излучение указанных двухуровневых систем становится вынужденным и когерентным. Известно также устройство [2], в котором реализуется указный способ генерации КЭМИ - лазер на гетероструктурах, содержащий подложку с нанесенными на нее ультратонкими полупроводниковыми слоями с геометрией квантовых точек, помещенных в резонатор для КЭМИ, и электроконтактные пластины.

Недостатком данного лазера на гетероструктурах является достаточно большой размер указанного резонатора, который даже в пределе не может быть меньше длины волны КЭМИ, генерируемого данным лазером, а также недостаточно узкая ширина спектральной линии генерируемого КЭМИ.

Известен также дипольный нанолазер (ДНЛ) для генерации КЭМИ [3], состоящий из квантовой точки - двухуровневой системы и металлической или полупроводниковой наночастицы размерами меньше длины волны указанного излучения, помещенных в прозрачную среду на расстоянии друг от друга, меньшем длины волны указанного излучения, который выбран в качестве прототипа данного изобретения.

Недостатком указанного ДНЛ - прототипа является недостаточно высокая добротность его резонатора, роль которого исполняет указанная наночастица, возбуждаемая на частоте, близкой к частоте ее локализованного плазмонного резонанса (ЛПР), что затрудняет возбуждение ДНЛ. Существенной причиной, понижающей добротность указанного резонатора, являются потери энергии на излучение указанной наночастицы, резонансная дипольная мода колебаний которой возбуждается при работе ДНЛ.

Целью данного изобретения является устранение указанного недостатка и повышение добротности резонатора дипольного нанолазера.

Указанная цель достигается за счет того, что указанный резонатор содержит дополнительно еще одну наночастицу, расположенную от указанной наночастицы и от указанной квантовой точки на расстояниях, меньших длины волны когерентного электромагнитного излучения, для генерации которого предназначен указанный нанолазер, причем, указанные наночастицы способны к возбуждению колективной дипольной моды колебаний, когда дипольные моменты наночастиц осциллируют «в противофазе» друг с другом на частоте указанного когерентного электромагнитного излучения, близкой к собственной частоте ЛПР указанных наночастиц.

Описание изобретения

Сущность заявляемого изобретения изложена в нижеследующем описании.

На фиг.1 представлено схематическое изображение предлагаемого дипольного нанолазера, где

1 - подложка,

2 - полупроводниковые ячейки с геометрией квантовых точек,

3 - прозрачный проводящий слой,

4 - металлические (или полупроводниковые) наночастицы,

5 - прозрачный проводящий слой,

6 - электроконтактные пластины,

7 - дипольный нанолазер.

Предлагаемый дипольный нанолазер, работает следующим образом. При подаче разности потенциалов между подложкой (1) и прозрачным проводящим слоем (5) между ними возникает электрический ток, за счет которого электроны в квантовых точках (например, островках InGaAs в ультратонком полупроводниковом слое, например, из In) попадают в верхнее энергетическое состояние квантовых точек и затем релаксируют на их нижнее состояние. Испускаемые при этом кванты электромагнитного излучения, вследствие диполь-дипольного взаимодействия между двухуровневой системой квантовой точки и двумя наночастицами (например, шарообразными, серебряными), расположенными на расстоянии, меньшем длины волны указанного излучения, и имеющими частоту плазмонного резонанса, близкую к частоте излучения двухуровневой системы, вызывают в указанных наночастицах колебания электронов с частотой, близкой к частоте указанного излучения, что приводит к гармоническим осцилляциям дипольных моментов указанных наночастиц. При этом, если геометрические формы и размеры указанных наночастиц достаточно близки и они выполнены из одинакового материала, т.е. если указанные наночастицы практически идентичны (например, шарообразные серебряные наночастицы), то из-за взаимодействия через ближнее поле в них могут возбуждаться две собственные моды осцилляции электронной плотности (поляризации) - «в фазе» и «в противофазе».

Заметим также, что способностью к возбуждению указанных мод осцилляции на резонансной частоте обладают не только идентичные наночастицы. Такой способностью обладают любые две наночастицы с близкими дипольными моментами, даже если они, например, выполнены из различных материалов. Но поскольку осцилляции «в фазе» сопровождаются значительными потерями энергии на излучение, то это понижает добротность резонатора ДНЛ, роль которого исполняют указанные две наночастицы. Также отметим, что осцилляции единичной наночастицы всегда сопровождаются значительными потерями энергии на излучение, что является недостатком известного нанолазера-прототипа.

Напротив, мода осцилляции «в противофазе» практически лишена потерь энергии на излучение (подобно тому, как это происходит в случае двух атомов [4]). Резонансное и селективное возбуждение моды осцилляции «в противофазе» обеспечивается тем, что частота этой моды отстроена от частоты другой моды, моды «в фазе», на величину энергии диполь-дипольного взаимодействия указанных наночастиц. При этом диполь-дипольное взаимодействие между двухуровневой системой указанной квантовой точки и указанной парой наночастиц вызывает положительную обратную связь между осцилляциями электронов указанных взаимодействующих объектов, т.е. чем больше амплитуда колебаний дипольных моментов указанных наночастиц, тем выше вероятность перехода электрона между энергетическими состояниями в двухуровневой системе указанной квантовой точки.

Дипольный нанолазер начинает работать при увеличении разности потенциалов между подложкой (1) и слоем (5), т.е. при увеличении скорости накачки до такой степени, что населенность верхнего энергетического состояния двухуровневой системы становится больше населенности ее нижнего энергетического состояния, т.е. наступает инверсия состояний двухуровневой системы, а скорость излучения двухуровневой системы становится больше скорости потерь излучения за счет поглощения в металлической частице. При выполнении этих условий возникает когерентное излучение в свободное пространство на частоте перехода двухуровневой системы квантовой точки, близкой к частоте ЛПР наночастиц.

Пример реализации предлагаемого изобретения

Предлагаемый дипольный нанолазер реализуют, например, в технологии его изготовления, подобной той, которая приведена в описании патента RU 2249278 [3]. А именно, на подложке (1) (см. фиг.1) из кремния выращивается структура-полуфабрикат с ультратонкими полупроводниковыми слоями (2), например, из InGaAs.

Затем в этой структуре-полуфабрикате методом боковых ограничений создаются элементы с геометрией квантовых точек подобно тому, как это сделано в работе [2], где периодически расположенные на расстоянии около 70 нм друг от друга островки InGaAs диаметром около 30 нм представляют собой указанные квантовые точки.

Затем указанная структура квантовых точек, находящихся на подложке (1), закрывается проводящим слоем (3), толщиной около 10 нм (заведомо меньше длины волны указанного когерентного электромагнитного излучения). После этого на указанный проводящий слой (3) наносятся заранее заготовленные эллипсоидальные или шарообразные серебряные наночастицы близких размеров и форм (4) с такой плотностью, чтобы среднее расстояние между указанными наночастицами было меньше длины волны указанного КЭМИ.

Далее, структура нанесенных на слой (3) наночастиц заращивается проводящим материалом (5), например золотом, прозрачным (из-за малой толщины) для генерируемого КЭМИ. При этом во многих местах изготовленного образца реализуется такая ситуация, что на расстояниях, меньших длины волны указанного КЭМИ, оказываются пары практически идентичных наночастиц, т.е. частиц, способных к возбуждению дипольных колебаний «в противофазе». При этом взаимное расположение наночастиц и квантовых точек оказывается меньше длины волны указанного КЭМИ так, что они могут сформировать предлагаемый нанолазер.

Чтобы обнаружить эти участки, между подложкой (1) и слоем из проводящего материала (5) создается разность потенциалов, которая увеличивается до момента, когда в различных участках появляется излучение КЭМИ, т.е. начинается лазерная генерация КЭМИ. Эти места фиксируются и вырезаются из приготовленного таким способом образца. На поверхности вырезанных фрагментов наносятся электроконтактные пластины (6). Каждый такой фрагмент (7) и является предлагаемым дипольным нанолазером.

Источники информации

1. X.Кейси, М.Паниш, Лазеры на гетероструктурах, Мир, М., 1976 г.

2. Чельный А.А., Кобяков М.Ш., Симаков В.А., Елисеев П.Г., Патент RU 2168249.

3. Займидорога О.А., Проценко И.Е., Самойлов В.Н., Патент RU 2249278.

4. Проценко И.Е., ЖЭТФ, 103, 167 (2006).

Дипольный нанолазер для генерации когерентного электромагнитного излучения, включающий двухуровневую систему в форме квантовой точки, резонатор для когерентного электромагнитного излучения, включающий металлическую или полупроводниковую наночастицу, и электроконтактные пластины, отличающийся тем, что указанный резонатор содержит дополнительно еще одну наночастицу, расположенную от указанной наночастицы и от указанной квантовой точки на расстояниях, меньших длины волны когерентного электромагнитного излучения, для генерации которого предназначен указанный нанолазер, причем обе указанные наночастицы способны к возбуждению дипольной моды колебаний в противофазе на частоте указанного когерентного электромагнитного излучения.



 

Похожие патенты:

Изобретение относится к области квантовой электроники, а именно касается проблемы нанесения защитно-просветляющих и отражающих покрытий на торцевые грани светоизлучающих элементов, и может быть использовано при изготовлении лазеров и светодиодов на основе соединений AIIIBV.

Изобретение относится к области квантовой электроники, а более конкретно к активным элементам полупроводниковых лазеров с поперечной накачкой, которые могут быть использованы при создании систем посадки самолетов и проводки судов, в интерферометрии, дальнометрии, в системах отображения информации, для мониторинга окружающей среды, в медицине и т.д.

Изобретение относится к области лазерной техники, в частности к системам диодной накачки, к медицинским лазерам, а также к лазерным системам, используемым в информатике, оргтехнике и индустрии развлечений.

Изобретение относится к квантовой электронике, к полупроводниковым лазерам с поперечной накачкой возбуждающим пучком. .

Изобретение относится к резонаторам полупроводниковых лазеров с лучеиспускающей поверхностью на основе гетероструктур

Изобретение относится к оптоэлектронной технике, точнее - к компактным источникам лазерного излучения в инфракрасном диапазоне длин волн, а именно к полупроводниковым одночастотным источникам инфракрасного (ИК) излучения на основе лазера с дисковым резонатором, работающего на модах шепчущей галереи (Whispering Gallery Modes - WGM)

Изобретение относится к решеткам дипольных нанолазеров. Устройство включает в себя подложку, на которой находится активный слой, прозрачный проводящий слой, прозрачный диэлектрический слой, металлические наночастицы-наноантенны. Причем наноантенны вытянуты - один размер превосходит два других. Электромагнитной связи эмиттеров активного слоя с решеткой наноантенн обеспечивается подбором оптимального расстояния между активным слоем и наноантеннами. Для генерации излучения используется инжекционный тип накачки. Технический результат заключается в повышении КПД, реализации непрерывного режима, обеспечении узких линий генерации, уменьшении размеров устройства, повышении его надежности, снижении пороговой мощности накачки. 4 з.п. ф-лы, 1 ил.

Полупроводниковое светоизлучающее устройство белого цвета содержит оптически прозрачный корпус с нанесенным на стенках люминофором. Внутри корпуса установлены лазерные диоды, имеющие ось симметрии. Причем лазерные диоды расположены последовательно на оси симметрии светоизлучающего устройства таким образом, что их оси симметрии совпадают между собой. Торцы лазерных диодов соединены так, что они находятся в электрическом и механическом контакте и образуют линейку лазерных диодов, диаграмма направленности излучения которой имеет ось симметрии, совпадающую с осью симметрии светоизлучающего устройства. Технический результат заключается в создании полупроводникового светоизлучающего устройства белого света большой интенсивности светового излучения без увеличения размеров светоизлучающих элементов, обеспечивающего при этом однородную засветку люминофора. 1 з.п. ф-лы, 9 ил.

Активный элемент полупроводникового лазера с поперечной накачкой электронным пучком содержит прямоугольную пластину из полупроводникового материала, имеющую первую поверхность, облучаемую электронами, вторую поверхность параллельную первой, которой она закреплена на подложке, и две боковые поверхности, образующие оптический резонатор. Пластина представляет собой многослойную полупроводниковую гетероструктуру, имеющую волноводный слой, расположенный вблизи первой поверхности, и пассивный волноводный слой с малым коэффициентом поглощения генерируемого в оптическом резонаторе излучения, расположенный между активным волноводным слоем и подложкой, причем пассивный волноводный слой имеет оптическую связь с активным волноводным слоем. Технический результат заключается в повышении выходной мощности излучения при снижении энергии электронов накачки. 5 з.п. ф-лы, 3 ил.

Изобретение относится к лазерной технике. Поляритонный лазер состоит из наполняющего материала (5), резонатора (4), представляющего из себя две системы плоских, цилиндрических колец, изготовленных из полупроводникового материала и вставленных друг в друга с переменным шагом, квантовых ям (6), расположенных в местах максимального значения поля. Кроме того, устройство содержит с двух сторон области квантовых ям и барьерных слоев (сверху и снизу) цилиндрические кольца, каждое из которых легировано с определенной концентрацией соответственно p- и n-типа (8), (9) и связано нанонитиевыми проводниками (1) с кольцами, входящими в состав резонатора, которые имеют на поверхности металлизированный контакт для подачи тока накачки (2), (3). При этом область возбуждения экситонных поляритонов представляет собой периметр круга, а область конденсатных поляритонов, из которой происходит лазерное излучение, находится внутри круга. Технический результат заключается в обеспечении возможности повышения рабочей температуры лазера вплоть до комнатных значений и выше. 2 ил.

Изобретение относится к области электронной техники, в частности к конструкции и работе полупроводниковых лазеров, и может быть использовано в системах записи, считывания и обработки информации

Наверх