Рабочая часть трансзвуковой аэродинамической трубы (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, предлагается сделать в поперечной стойке отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В результате отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам течет в зону за поперечной стойкой. В другом варианте изобретения ниже по потоку от поперечной стойки установлены трубопроводы, имеющие отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В обоих вариантах камера давления и каналы поперечной стойки или трубопроводы могут быть соединены через вентиляторы. Технический результат заключается в снижении энергозатрат и расширении диапазона чисел Маха при проведении испытаний. 2 н. и 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении исследований в трансзвуковых аэродинамических трубах.

Для проведения испытаний моделей летательных аппаратов в трансзвуковых аэродинамических трубах (числа Маха М=0,8-1,2) применяются рабочие части с перфорированными стенками, камерой давления, окружающей рабочую часть, и системой подвески модели с поперечной стойкой. При испытаниях модель вытесняет часть рабочего потока через отверстия перфорации. Далее этот газ должен удаляться из камеры давления, иначе в аэродинамической трубе не реализуется трансзвуковой диапазон чисел Маха из-за ее «запирания». Удаление газа производится, например, отдельным компрессором, так называемый «принудительный отсос» (см. А.Поуп, К.Гойн. Аэродинамические трубы больших скоростей. Издательство «Мир», Москва, 1968, стр.118). Потребляемая системой отсоса мощность достигает иногда 40% мощности основного компрессора трубы.

Известна также взятая за прототип конструкция рабочей части трансзвуковой аэродинамической трубы, включающая перфорированные стенки, камеру давления, узел подвески в потоке испытываемой модели с поперечной стойкой, в которой удаление газа из камеры давления производится с помощью «автоотсоса» (см. Г.Л.Гродзовский, А.А.Никольский, Г.П.Свищев, Г.И.Таганов. Сверхзвуковые течения газа в перфорированных границах. Издательство «Машиностроение», Москва, 1967, стр.90). В этом случае газ удаляется из камеры давления путем его эжектирования основным потоком через специально организуемый уступ в контуре за перфорацией. Недостатком такой конструкции являются большое сопротивление трубы основному потоку и соответственно большая потребная для испытаний мощность ее привода.

Задача настоящего изобретения - модернизировать рабочую часть трансзвуковой аэродинамической трубы.

Технический результат - снижение энергозатрат и расширение диапазона чисел Маха.

Решение задачи и технический результат достигаются тем, что в рабочей части трансзвуковой аэродинамической трубы, включающей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, поперечная стойка имеет отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. Отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки в основном потоке. Под аэродинамическим следом в аэродинамике понимается зона, расположенная ниже по потоку от обтекаемого тела и примыкающая к нему. Эта зона всегда расположена со стороны, противоположной набегающему потоку. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам потечет в зону за поперечной стойкой (П.Чжен. Отрывные течения. Пер. с англ., изд. «Мир», Москва, 1972, т.2, стр.86-88).

Решение задачи и технический результат также достигаются тем, что в рабочей части трансзвуковой аэродинамической трубы, включающей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, ниже по потоку от поперечной стойки установлены трубопроводы с отверстиями со стороны, противоположной набегающему потоку, и каналами, соединяющими камеру давления и эти отверстия. В результате камера давления соединяется с аэродинамическим следом от трубопроводов, и в него из камеры давления начинает поступать самотеком газ.

Кроме того, в обоих вариантах камера давления и каналы поперечной стойки или трубопроводов могут быть соединены через вентиляторы.

На фиг.1 приведена схема рабочей части трансзвуковой аэродинамической трубы по первому варианту изобретения.

На фиг.2 приведена схема рабочей части трансзвуковой аэродинамической трубы по второму варианту изобретения.

На фиг.3 показана установка вентиляторов во втором варианте изобретения.

В первом варианте (фиг.1) рабочая часть трансзвуковой аэродинамической трубы состоит из звукового сопла 1, перфорированных стенок 2, камеры давления 3, поперечной стойки 4 узла подвески испытываемой модели и диффузора 5. Внутри поперечная стойка имеет каналы 6 и отверстия 7 со стороны, противоположной набегающему потоку. При испытаниях поток разгоняется в сопле 1, направляется к модели и начинает ее обтекать. Часть потока при трансзвуковых скоростях вытесняется моделью через отверстия перфорации 2 в камеру давления 3. Далее этот газ поступает в полую (с каналами 6) поперечную стойку 4 узла подвески испытываемой модели и через отверстия 7 в ней в зоне обтекания стойки потоком поступает в поток и далее выбрасывается в диффузор.

Рабочая часть трансзвуковой аэродинамической трубы по второму варианту изобретения (фиг.2) состоит из звукового сопла 1, перфорированных стенок 2, камеры давления 3, поперечной стойки 4 узла подвески испытываемой модели, диффузора 5 и специальных трубопроводов 6 с каналами 7 и отверстиями 8, расположенных за поперечной стойкой 4 ниже по потоку в ее аэродинамическом следе. Специальные трубопроводы 6 через каналы 7 открыты в камеру давления, и в то же время они открыты через отверстия 8 в поток со стороны, противоположной набегающему потоку. При испытаниях поток разгоняется в сопле 1, направляется к модели и начинает ее обтекать. Часть потока при трансзвуковых скоростях вытесняется моделью через отверстия перфорации 2 в камеру давления 3. Далее этот газ поступает в полые (с каналами 7) трубопроводы 6, установленные за поперечной стойкой 4, и через отверстия 8 в них в зоне обтекания трубопроводов 6 потоком поступает в поток и затем выбрасывается в диффузор.

Статическое давление в аэродинамическом следе существенно (иногда вдвое) меньше статического давления в рабочей части и камере давления, поэтому газ потечет сам из камеры давления в аэродинамический след, если сделать соответствующие каналы. Для увеличения расхода этого газа в обоих вариантах изобретения камера давления и каналы стойки или дополнительных трубопроводов могут соединяться через вентиляторы 9 (фиг.3). Статическое давление в аэродинамическом следе действительно мало и большого напора не потребуется.

Использование изобретения позволит уменьшить сопротивление аэродинамической трубы основному потоку и повысить экономичность испытаний. Кроме этого, при изменении скорости потока во время пуска аэродинамической трубы отсос газа через предлагаемую систему отверстий в области стойки и дополнительных трубопроводов позволит продвинуться в область больших чисел Маха.

Данное предложение может применяться как альтернатива автоотсосу и принудительному отсосу, так и одновременно с ними.

1. Рабочая часть трансзвуковой аэродинамической трубы, включающая перфорированные стенки, окружающую их камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, отличающаяся тем, что поперечная стойка имеет отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия.

2. Рабочая часть трансзвуковой аэродинамической трубы по п.1, отличающаяся тем, что камера давления и каналы поперечной стойки соединены через вентиляторы.

3. Рабочая часть трансзвуковой аэродинамической трубы, включающая перфорированные стенки, окружающую их камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, отличающаяся тем, что за поперечной стойкой ниже по потоку установлены трубопроводы с отверстиями со стороны, противоположной набегающему потоку, и каналами, соединяющими камеру давления и эти отверстия.

4. Рабочая часть трансзвуковой аэродинамической трубы по п.3, отличающаяся тем, что камера давления и каналы в трубопроводах соединены через вентиляторы.



 

Похожие патенты:

Изобретение относится к тренажерам и может быть использовано в качестве тренажера для подготовки парашютистов и развлекательных целей. .

Изобретение относится к транспортному машиностроению, в частности к авиадвигателестроению, и может быть использовано для наземных испытаний и исследования характеристик пульсирующего детонационного двигателя.

Изобретение относится к области аэродинамики и может быть использовано для аэродинамических исследований, подготовки спортсменов-парашютистов и других целей. .

Изобретение относится к аэродинамическим трубам и может быть использовано для проведения различных испытаний моделей летательных аппаратов, моделей несущих и рулевых винтов; парашютных систем и тренировки парашютистов в условиях, соответствующих условиям свободного падения в атмосфере.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвуковых потоков газа для аэродинамических исследований.

Изобретение относится к области экспериментальной аэродинамики, в частности к классу аэродинамических труб, и может быть использовано для получения низкотурбулентного потока воздуха при проведении наземных испытаний объектов авиационной техники.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвуковых потоков газа для аэродинамических исследований.

Изобретение относится к экспериментальной технике для аэродинамических исследований летательных аппаратов при больших числах Рейнольдса и гиперзвуковых числах Маха.

Изобретение относится к экспериментальной аэрогазодинамике, в частности к средствам для установки и перемещения моделей различных летательных аппаратов в рабочих частях аэродинамических труб с высокими значениями скоростных напоров

Изобретение относится к экспериментальной аэродинамике, в частности к определению характеристик штопора геометрически и динамически подобной свободно летающей модели летательного аппарата (ЛА) в воздушном потоке вертикальной аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам (АДТ) криогенного типа

Изобретение относится к области приборостроения и может быть широко использовано для решения разных задач экспериментальной аэродинамики, в частности для экспериментальных диагностических измерений параметров газового потока

Изобретение относится к области промышленной аэродинамики, в частности к гиперзвуковым аэродинамическим трубам (АДТ)

Симулятор свободного падения с замкнутой циркуляцией воздуха включает в себя камеру парения, в которой люди могут парить вследствие направленного вертикально вверх воздушного потока, с нижним отверстием на нижнем конце и верхним отверстием на верхнем конце, замкнутый воздухопровод с нагнетателем, который соединяет нижнее отверстие и верхнее отверстие камеры парения, отверстие впуска воздуха и отверстие выпуска воздуха для обмена воздуха внутри воздухопровода, отклоняющие устройства, отклоняющие пластины, которые изменяют направление воздушного потока внутри воздухопровода в угловых зонах и в зонах малого радиуса изгиба. Отверстие выпуска воздуха расположено внутри отклоняющего устройства. Вентиляционное устройство включает аэродинамическую трубу и отклоняющее устройство. Группа изобретений направлена на повышение эффективности регулирования температуры. 4 н. и 22 з.п. ф-лы, 8 ил.

Группа изобретений относится к гиперзвуковым аэродинамическим трубам (АДТ). Способ включает генерацию газа высокого давления из жидкого газа путем его газификации, регулирование давления и нагрев газа, охлаждение стенок сопла, рабочей части и диффузора, охлаждение рабочего газа в газоохладителе, создание разрежения в вакуумной камере, откачку газа из вакуумной камеры производят с помощью ККН, вымораживая рабочий газ на криопанелях в твердую фазу. При превышении предельной толщины слоя конденсата производят регенерацию криопанелей, напуская осушенный атмосферный воздух в изолированную полость ККН, полученный в результате регенерации сжиженный газ откачивают для хранения в резервуаре и газифицируют с целью поддержания требуемого давления в резервуаре газа высокого давления за счет энергии осушенного атмосферного воздуха. Для охлаждения рабочего газа в газоохладителе используют сжиженный газ, а полученный газ высокой температуры и давления направляют в резервуар газа высокого давления и (или) используют в газификаторе. В устройстве для откачки вакуумной камеры используются ККН, в которых газ не выбрасывается из вакуумируемой полости, а конденсируется в твердую фазу на предварительно охлажденных до Т=10÷25 K криопанелях. Для улучшения характеристик существующих ККН предлагается использовать импульсный режим их работы, а криопанели выполнять из пористого металла с открытой системой пор. Технический результат заключается в увеличении расхода откачиваемого газа, снижении энергозатрат на получение газа высокого давления на газификацию жидкого газа, нагреве и охлаждении рабочего газа, увеличении времени работы АДТ, уменьшении ее габаритов. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к экспериментальной аэродинамике, в частности к аэродинамическим установкам (трубам), и может быть использовано для испытаний моделей лопастей воздушных винтов. Устройство содержит входной тракт с задвижкой и дросселем для ввода сжатого воздуха, форкамеру, пульсатор, сопло, рабочую часть, устройство изменения углового положения модели профиля сечения лопасти винта и проведения весовых измерений, выхлопной тракт, рабочую камеру. В форкамере установлены два дросселя, один из которых выполняет роль пульсатора, а другой предназначен для регулирования стационарной составляющей расхода воздуха. Оба дросселя изготовлены в виде двух расположенных соосно перфорированных цилиндров, причем внешние цилиндры неподвижны, внутренний цилиндр пульсатора выполнен с возможностью совершать вращательные и возвратно-поступательные перемещения, а внутренний цилиндр дросселя регулирования стационарной составляющей расхода воздуха выполнен с возможностью совершать только возвратно-поступательные перемещения вдоль оси. Стенки рабочей части аэродинамической трубы выполнены перфорированными. Устройство изменения углового положения модели выполнено в виде отсека рабочей части аэродинамической трубы, на боковых стенках отсека которого расположены тензовесы и устройство изменения углового положения, содержащее механизм синхронизации углового положения модели с пульсациями скорости потока в рабочей части. Технический результат заключается в повышении качества моделирования натурного обтекания профиля сечения лопасти воздушного винта. 3 ил.
Наверх