Способ получения полиметилметакрилата

Настоящее изобретение относится к получению полиметилметакрилата. Описан способ получения полиметилметакрилата радикальной полимеризацией в массе метилметакрилата в присутствии инициирующей системы, одним из компонентов которой является пероксид бензоила, отличающийся тем, что в качестве второго компонента инициирующей системы используют бис-ферроценилборатный макробициклический трис-1,2-циклогександиондиоксимат железа(II), мольное соотношение бис-ферроценилборатный макробициклический трис-1,2-циклогександиондиоксимат железа(II):пероксид бензоила составляет (0.01-0.1):(0.05-1), полимеризацию проводят при 30-60°С. Технический результат - увеличение скорости полимеризации, уменьшение расхода компонентов инициирующей системы, снижение температуры полимеризации, устранение гель-эффекта, регулирование молекулярной массы получаемого полиметилметакрилата. 1 табл.

 

Изобретение относится к химии высокомолекулярных соединений и может найти применение в производстве полиметилметакрилата.

Известен способ получения полиметилметакрилата методом блочной радикальной полимеризации [Энциклопедия полимеров. В 3-х томах. М.: Советская энциклопедия. 1977. Т.2.]. Инициаторами служат органические и неорганические пероксиды, азобисизобутиронитрил, а также некоторые окислительно-восстановительные системы (например, пероксид бензоила с третичными аминами).

Недостатками этого способа являются:

1) гель-эффект, который приводит к спонтанному неконтролируемому росту молекулярной массы, следовательно, к ухудшению свойств получаемых полимеров;

2) низкая скорость полимеризации и относительно высокая температура синтеза (80-120°С);

3) большой расход инициатора.

Наиболее близким к описываемому изобретению по технической сущности и базовым объектам является способ получения полиметилметакрилата радикальной полимеризацией в массе метилметакрилата в присутствии инициирующей системы ферроцен - пероксид бензоила [Пузин Ю.И., Юмагулова Р.Х., Крайкин В.А., Ионова И.А., Прочухан Ю.А. Ферроцен в радикальной полимеризации метилметакрилата. // Высокомолек. соед. Б. 2000. Т.42. №4. С.691-694]. Оптимальная температура полимеризации равна 60°С, мольное соотношение компонентов системы ферроцен: пероксид бензоила - 1:1. Выход полимера в этих условиях за 8 ч составляет 65-70%. Недостатком этого способа является относительно большой расход компонентов инициирующей системы, а также гель-эффект.

Задача, на решение которой направлено заявленное техническое решение, состоит в увеличении скорости полимеризации, уменьшении расхода компонентов инициирующей системы при получении полиметилметакрилата, снижении температуры проведения полимеризации, устранении гель-эффекта и регулировании молекулярной массы получаемого полиметилметакрилата за счет создания инициирующей системы высокой активности.

В заявленном техническом решении для синтеза полиметилметакрилата радикальной полимеризацией метилметакрилата в массе используют инициирующую систему, состоящую из бис-ферроценилборатного макробициклического трис-1,2-циклогександиондиоксимата железа(II) (ФЦК) и пероксида бензоила.

ФЦК получают по методу [Волошин Я.З., Макаров И.С., Вологжанина А.В., Монаков Ю.Б., Исламова P.M., Польшин Э.В., Бубнов Ю.Н. Темплатный синтез и строение бис-ферроценилборатных макробициклических трис-диоксиматов железа(II). // Известия АН. Сер. хим. 2008. №5].

Сущность способа состоит в следующем. Метилметакрилат полимеризуют в массе при 30-60°С в присутствии инициирующей системы, состоящей из ферроценилсодержащего клатрохелата железа(II) и пероксида бензоила, при мольном соотношении компонентов системы ФЦК: пероксид, равном (0.01-0.1):(0.05-1) с выходом полимера 97-100%. Способ позволяет получать полиметилметакрилат с регулируемой молекулярной массой.

Пример 1

В реактор (ампула или дилатометр) загружают метилметакрилат, добавляют метилметакрилатные растворы ФЦК и пероксида бензоила при мольном соотношении компонентов 0.05:0.5. Выход полимера при температуре 60°С за 10 ч составляет 100%. В прототипе в тех же условиях при мольном соотношении ферроцен:пероксид бензоила, равном 1:1, выход полимера составил 70%.

Пример 2 иллюстрирует влияние ФЦК на скорость и температуру полимеризации.

Полимеризацию метилметакрилата проводили в условиях примера 1 с использованием ФЦК и пероксида бензоила в заявленном интервале значений. Полученные результаты приведены в таблице. Из таблицы видно, что использование ФЦК и пероксида бензоила увеличивает скорость полимеризации и позволяет снизить температуру процесса (30 и 60°С). Так, начальная скорость полимеризации в присутствии ФЦК в 2-4 раза больше, чем в прототипе, при 60 и 30°С соответственно.

Пример 3 иллюстрирует влияние ФЦК на снижение концентрации пероксида бензоила.

Полимеризацию метилметакрилата проводили в условиях примера 1 в заявленном интервале значений ФЦК. Полученные результаты, представленные в таблице, показывают, что введение ФЦК в инициирующую систему позволяет уменьшить содержание пероксида бензоила в 10-20 раз по сравнению с прототипом при сохранении основных параметров процесса.

Пример 4 показывает влияние концентрации ФЦК на устранение нежелательного гель-эффекта.

Полимеризация метилметакрилата в условиях примера 1 при мольном соотношении ФЦК:пероксид бензоила, равном (0.08-0.1):1, в заявленном интервале температур протекает без гель-эффекта, что не наблюдается в прототипе.

Пример 5 показывает влияние соотношения компонентов инициирующей системы на молекулярную массу полиметилметакрилата.

Полимеризацию метилметакрилата проводили в условиях примера 1 в присутствии различных соотношений ФЦК и пероксида бензоила при температурах 30 и 60°С. Полученные результаты приведены в таблице. Из таблицы следует, что в зависимости от соотношения компонентов инициирующей системы были получены высоко- и низкомолекулярные полимеры, что свидетельствует о возможности регулирования молекулярной массы получаемого полиметилметакрилата.

Технико-экономическая эффективность предлагаемого способа состоит в следующем.

1. Полимеризация метилметакрилата в присутствии инициирующей системы, состоящей из пероксида бензоила и ферроценилсодержащего клатрохелата железа(II), протекает при температурах 60-30°С со скоростью в 2-4 раза выше, чем в прототипе.

2. Использование ферроценилсодержащего клатрохелата железа(II) в составе инициирующей системы позволяет снизить расход пероксида бензоила в 10-20 раз по сравнению с прототипом.

3. Концентрация вводимого в полимеризацию ферроценилсодержащего клатрохелата железа(II) на один-два порядка ниже, чем в прототипе.

4. Использование ФЦК с концентрацией (0.08-0.1)×10-3 моль/л в инициирующей системе позволяет устранить нежелательный гель-эффект.

5. Использование ФЦК в сочетании с пероксидом бензоила способствует регулированию молекулярной массы получаемого полиметилметакрилата по сравнению с прототипом.

6. Способ получения полиметилметакрилата прост и не требует особой аппаратуры.

Радикальная полимеризация метилметакрилата в массе в присутствии инициирующей системы ФЦК - пероксид бензоила при различной температуре. Конверсия полимеров - 5-10%.

Способ получения полиметилметакрилата радикальной полимеризацией в массе метилметакрилата в присутствии инициирующей системы, одним из компонентов которой является пероксид бензоила, отличающийся тем, что в качестве второго компонента инициирующей системы используют бис-ферроценилборатный макробициклический трис-1,2-циклогександиондиоксимат железа(II), мольное соотношение бис-ферроценилборатный макробициклический трис-1,2-циклогександиондиоксимат железа(II):пероксид бензоила составляет (0,01-0,1):(0,05-1), полимеризацию проводят при 30-60°С.



 

Похожие патенты:

Изобретение относится к области получения листового органического стекла (со)полимеризацией в массе эфиров (мет)акриловой кислоты, применяемого для изготовления нейтральных светофильтров, которые используются в приборостроении, средствах индивидуальной защиты и остеклении спортивных самолетов.

Изобретение относится к области разработки материалов остекления на основе органических стекол, в том числе и ориентированных, применяемых для остекления воздушных, водных и наземных транспортных средств.

Изобретение относится к технологии получения низкомолекулярного полиметилметакрилата и может быть использовано в химической промышленности для получения литьевого полиметилметакрилата.

Изобретение относится к области получения блочного органического стекла методом радикальной полимеризации метилметакрилата в массе. .
Изобретение относится к области высокомолекулярной химии, в частности к получению полимерных светофильтров, которые могут быть использованы для коллективной и индивидуальной защиты и оптимизации зрения при просмотре изображений различных видеосистем (телевизоров, компьютеров и др.).

Изобретение относится к химии полимеров, в частности к способу получения пластмассовых сцинтилляторов. .

Изобретение относится к усовершенствованному способу получения карбоновой кислоты и/или сложного эфира спирта и карбоновой кислоты, включающему карбонилирование спирта и/или его реакционноспособного производного монооксидом углерода в жидкой реакционной смеси в реакторе карбонилирования, причем упомянутая жидкая реакционная смесь содержит упомянутый спирт и/или его реакционноспособное производное, катализатор карбонилирования, алкилгалогенидный сокатализатор, где упомянутый катализатор включает по меньшей мере один из родия или иридия, который координирован с полидентатным лигандом, где упомянутый полидентатный лиганд обладает углом раскрытия по меньшей мере 145° или образует жесткий Rh или Ir металлолигандный комплекс, и упомянутый полидентатный лиганд включает по меньшей мере две координационные группы, которые в качестве координационного атома по меньшей мере двух координационных групп независимо содержат Р, N, As или Sb, при этом в данном способе поддерживают концентрацию водорода при мольном соотношении водород: СО по меньшей мере 1:100 и/или монооксид углерода, направляемый реактор карбонилирования, содержит по меньшей мере 1 мол.% водорода, и в котором диапазон гибкости катализатора составляет менее 40°.

Изобретение относится к способам получения линейных углеводородов, конкретно к способу получения н-алканов. .

Изобретение относится к усовершенствованному способу получения карбоновой кислоты и/или сложного эфира спирта и карбоновой кислоты, включающему карбонилирование C1-С 8алифатического спирта и/или его реакционноспособного производного монооксидом углерода в жидкой реакционной смеси в реакторе карбонилирования, причем упомянутая жидкая реакционная смесь содержит упомянутый спирт и/или его реакционноспособное производное, катализатор карбонилирования, алкилгалогенидный сокатализатор и, необязательно, воду в ограниченной концентрации, причем катализатор включает кобальт, родий или иридий, координированный с тридентатным лигандом, или их смеси.

Изобретение относится к непрерывному способу карбонилирования алифатических углеводородов с длинной цепью для получения спиртов, кислот или других кислородсодержащих продуктов, таких как сложные эфиры.
Изобретение относится к металлоорганическим композициям и может использоваться в композициях для связывания лигноцеллюлозных материалов. .

Изобретение относится к способу получения -фенилэтилгидропероксида из этилбензола окислением последнего кислородом в присутствии тройной каталитической системы, включающей бис-ацетилацетонат никеля, электронно-донорное комплексообразующее соединение, например стеарат щелочного металла - натрия или лития, N-метилпирролидон-2, гексаметилфосфортриамид, а также фенол в концентрации (0,5-3,0)10-3 моль/л, -фенилэтилгидропероксид используется для получения пропиленоксида, мировое производство которого составляет более 106 тонн в год, причем 44% производства основано на применении ФЭГ в качестве эпоксидирующего агента.

Изобретение относится к способу получения диалкилкарбонатов, содержащему стадии (а) подачи мочевины и первичного спирта в зону реакции; (b) подачи каталитического комплекса - оловоорганическое соединение, высококипящий растворитель, содержащий электронодонорный атом, - в указанную зону реакции; (с) одновременно в указанной зоне реакции (i) взаимодействия части первичного спирта и мочевины в присутствии указанного оловоорганического соединения и указанного высококипящего растворителя, содержащего электронодонорный атом, до получения диалкилкарбоната, и (ii) удаления диалкилкарбоната и аммиака из указанной зоны реакции в виде пара, и относится также к гомогенному катализатору, применимому для взаимодействия мочевины и первичных спиртов для получения диалкилкарбонатов, содержащему комплекс оловоорганического соединения с бидентатным лигандом, который образует бидентатные 1:1 и/или монодентатные 1:2 аддукты с R'2SnX2, где Х обозначает Cl, R'O, R'COO или R'COS; R'3SnX, R'2SnO, Ph3-nR'SnXn или Ph4-nSnXn, где R' обозначает СqH2q-1, n= 0,1 или 2 и q = 1 - 12, и их смесями.

Изобретение относится к иридий-платиновому комплексу следующей формулы (I): где Ср* выбран из группы, состоящей из циклопентадиенильного лиганда, пентаметилциклопентадиенильного лиганда, пентаэтилциклопентадиенильного лиганда и пентапропилциклопентадиенильного лиганда, Х представляет собой атом водорода или группу заместителя, выбранную из группы, состоящей из атома фтора, атома хлора, атома брома, атома иода, гидроксильной группы и органической группы, размещенной в орто-, мета- или параположении по отношению к фенильной группе, или при сочетании этих положений, и Y выбран из группы, состоящей из метильной группы, этильной группы и пропильной группы, причем указанная органическая группа выбрана из группы, состоящей из алкильной группы, алкоксигруппы, алкенильной группы, алкенилоксигруппы, алкинильной группы, алкинилоксигруппы, арильной группы, арилоксигруппы, аралкильной группы и аралкилоксигруппы, которые могут иметь гетероатом или связь простого эфира, которые являются замещенными или незамещенными и которые представляют собой C1-С30
Наверх