Способ извлечения мышьяка из водных растворов

Изобретение относится к гидрометаллургии цветных металлов, в частности к способам извлечения мышьяка из растворов, и может быть использовано для извлечения мышьяка из сточных вод металлургической, химической и других отраслей промышленности, а также в производстве металлов из вторичного сырья. Способ извлечения мышьяка из растворов, содержащих ряд металлов, включает осаждение мышьяка в виде арсената добавлением соединения железа. Осаждение ведут с использованием в качестве соединения железа модифицированных катионным поверхностно-активным веществом (ПАВ) нанокристаллов акаганеита (β-Fе3+O(ОН) в наноструктурном диапазоне в пределах от 2,12 до 2,34 нм и при рН 6-8. Осаждение арсенатов ведут из растворов с концентрацией ионов мышьяка, равной 0,5-1,0 мг/л. Модифицированные катионным поверхностно-активным веществом кристаллы акаганеита получают путем сорбции катионного поверхностно-активного вещества - гексилдецил триметил аммония бромида (ГДТМВr) на акаганеите, осмоса на мембране М 45 и сублимационной сушки при комнатной температуре. Техническим результатом является снижение затрат и повышение эффективности извлечения мышьяка. 2 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к гидрометаллургии цветных металлов, в частности к способам извлечения мышьяка из растворов, и может быть использовано для извлечения мышьяка из сточных вод металлургической, химической и других отраслей промышленности, а также в производстве металлов из вторичного сырья. Для извлечения As из разбавленных растворов использовали гидроксиды железа, в качестве которого применяли нанокристаллы β-FeO(OH) акаганеита, модифицированные катионным поверхностно-активным веществом.

Известны способы удаления мышьяка из пылей свинцово-цинкового производства в нетоксичный сульфид мышьяка путем сульфидизации материала элементарной серой, выщелачивания сульфидом натрия, и из раствора мышьяк осаждается в виде сульфидов серной кислотой при рН 2 известными способами [1-2]. Известен способ удаления мышьяка, в котором для выделения As из раствора используют осадок Fе(ОН)3, образующийся в результате окисления кислородом под давлением ионов Fe2+, содержащихся в растворе или добавляемых в виде FeSO4. Степень соосаждения соединений As при рН 3,5-4,6 достигает 99,5% и зависит от соотношения Fe3+/As [3].

Для извлечения анионов мышьяка наиболее распространено осаждение их путем коагуляции солями алюминия и железа. Оксианионы мышьяка (V) были удалены из разбавленных водных растворов сорбцией их на тонких частицах синтетического гетита FeO(OH) и гидрооксидов железа [4].

Ближайшим по технической сущности и достигаемому результату к предлагаемому является способ переработки мышьяксодержащих пылей и возгонов, включающий их выщелачивание и выделение из растворов арсенатов, в исходный материал вводят добавку соли трехвалентного железа, а выщелачивание ведут раствором, содержащим 280-300 г/л хлористого натрия и 0,5-1,0 г/л соляной кислоты при 85-100°С, рН 0,8-1,2 и барботировании воздухом, а осаждение арсенатов железа ведут при рН 2,2-2,8 [4].

Технический результат изобретения - повышение степени извлечения мышьяка из растворов, предлагается использовать осадок акаганеита, модифицированный поверхностно-активным веществом, вывод мышьяка в низкотоксичную форму арсената железа, что не требует построения специального дорогостоящего сооружения для захоронения. Преимущество предлагаемого способа заключается в том, что он пригоден для низких концентрации извлекаемых ионов 5-10 мг/л, когда частицы не могут быть эффективно выделены существующими методами.

Сущность изобретения поясняется чертежами, где на фиг.1 представлены результаты сравнения экспериментальных данных поглощения с теоретическими кривыми для уравнения кинетики первого порядка; на фиг.2 показано влияние рН на удаление (R%) As (концентрация модифицированного акаганеита-сорбента - 0,5 г/л, исходная концентрация As(III) - 10 мг/л, время контакта 24 час и температура - 298 K) и на фиг.3 даны изотермы сорбции арсенатов на Ак и Акм при различных экспериментальных условиях: навеска модифицированного акаганеита 0,5 г/л, температура 25°С, время контакта 24 ч.

Предложен способ извлечения мышьяка из растворов, содержащих ряд металлов, включающий осаждение мышьяка в виде арсенатов добавлением соединения железа путем использования в качестве соединения железа модифицированных катионным поверхностно-активным веществов (ПАВ) нанокристаллов акаганеита β-Fe3+O(OH) в пределах от 2,12 до 2,34 нм при ионной силе раствора 0,1 KNO3 и при рН 4,5. Модифицированный акаганеит Акм приготовлен после сорбции катионного поверхностно-активного вещества - гексилдецил триметил аммония бромида (ГДТМВr) на акаганеите.

Используемые нанокристаллы акаганеита (АК) с площадью поверхности 299-300 м2/г и максимальной сорбционной емкостью 100-120 мг As(V) на г акаганеита получают путем осаждения хлорида железа (III) карбонатом аммония, осмоса на мембране М 45 и сублимационной сушки при комнатной температуре.

Акм эффективен для удаления арсенатов мышьяка из водных растворов. Максимальная сорбция арсенатов мышьяка была установлена 328,3 мг/г в широком диапазоне рН, что значительно выше, чем для всех известных сорбентов.

Синтез модифицированного акаганеита Акм осуществляли следующим образом. В колбы объемом 200 мл добавляли 100 мл 0,01 М раствора катионного ПАВ. Каждый раствор содержал 1,0 г Ак, и регулировали рН до 11.

Раствор перемешивали в ванне при температуре 25÷1°С в течение 24 ч шейкером до достижения равновесия сорбции (ГДТМВr). Отделение жидкости суспензии осуществляли на мембране размером 0,45 мкм и затем сорбент направляли на сублимационную сушку. Данные адсорбции ГДТМВr на акаганеите соответствует уравнению Фрейндлиха типа: Qeq=KF·Ceq1/n, где Qeq есть количество ГДТМВr, сорбированного на единицу веса твердого сорбента (Ак), Ceq - концентрация растворенного вещества в растворе при равновесии, и KF и 1/n - константы, показывающие адсорбционную способность и адсорбционную интенсивность, соответственно.

Значение этих констант представлено в таблице.

Таблица
Параметры равновесия для акаганеита Ак и акаганеита Акм для различных экспериментальных условий
Материал pH (-) Лэнгмюровские константы Фрейндлихские константы
R2 (-) Qmax (мг/г) KL (L мг/л) R2 (-) КF (мг/г) 1/n (-)
ГДТМВr на Аk 0,994 765,0 0,003 0,998 0,7 7,376
As(III) нa Ak 4 0,939 75,9 0,217 0,965 21,6 2,837
As(III) на Ak 7 0,994 135,2 0,063 0,989 12,7 1,686
Аs(III) на Akm 7 0,990 328,3 0,042 0,986 18,9 1,424
As(III) на Akm 4 0,866 169,6 0,104 0,766 33,8 2,510

Сорбция ГДТМВr описывается изотермой Лэнгмюра с коэффициентом корреляции (R2) свыше 0,99, и максимальная адсорбция былa (Qmax) 765 мг/г.

Значения Qmax и KL также представлены в таблице. Для получения растворов мышьяка (III) использовали триоксид мышьяка 99,8% чистоты. Использовали растворы с ионной силой 0,1 М. Навеску модифицированного акаганеита Акм весом 0,5 г/л помещали в серию колб с растворами мышьяка, варьируя начальную концентрацию As(III) от 0 до 300 мг/л. Регулирование pH осуществляли 0,1 М НСl или 0,1 М NaOH. Остаточную концентрацию определяли после мембранной фильтрации на мембране размером 0,45 мкм. Растворы перемешивали шейкером в течение 24 ч при температуре 25°С до достижения равновесия. Предварительными экспериментами установлено, что после 24 ч не наблюдалось изменение количества сорбции мышьяка. На фиг.1 представлены полученные результаты.

Найдено, что максимальная сорбционная емкость составляла 328,3 мг As(III) на г акаганеита, что выше по сравнению с другими сорбентами.

Осаждение арсенитов ведут при отношении железа акаганеита Fe/As к ионам мышьяка, равном 0,5-1,0.

Исследовали влияние рН на удаление (R%) As (концентрация модифицированного акаганеита-сорбента - 0,5 г/л, исходная концентрация As(III) - 10 мг/л, время контакта 24 час и температура - 298 K).

На фиг.2 представлены полученные результаты.

Как следует из фиг.2, максимальная сорбция наблюдается в пределах рН от 6 до 8, наилучшие результаты получены при рН 7.

Удаление As(III) на модифицированном акаганеита всегда было выше, чем на не модифицированном акаганеите (см. фиг.3).

Предлагаемое техническое решение соответствует критериям промышленной применимости, новизне и изобретательному уровню.

Техническим результатом является снижение затрат и повышение эффективности очистки сточных вод от катионов тяжелых металлов и арсенатов.

Источник информации

1. Авт.св. 789619 СССР. Способ удаления мышьяка из пылей свинцово-цинкового производства. Опубл. 23.10.80, бюл. №39.

2. Авт.св. 990841 СССР, С22В 7/02. Способ удаления мышьяка из свинец- и цинксодержащих пылей, опубл. 23.01.1983, бюл. №3.

3. Японская заявка. Така Сиро, Кудо Томоси, Кибаяси Ясуси, кл.10А 22, (С22В 3/00 №54-82307). Способ удаления мышьяка из сернокислых растворов. Опубл. 30.06.79.

4. Авт.св. 914647, СССР, М Кл3 С22В 7/02. Способ переработки мышьяксодержащих конвертерных пылей и возгонов. Опубл. 23.03.1982. Бюл. №11 (прототип).

1. Способ извлечения мышьяка из растворов, содержащих ряд металлов, включающий осаждение мышьяка в виде арсената добавлением соединения железа, отличающийся тем, что осаждение ведут с использованием в качестве соединения железа модифицированных катионным поверхностно-активным веществом (ПАВ) нанокристаллов акаганеита (β-Fе+3O(ОН) в наноструктурном диапазоне в пределах от 2,12 до 2,34 нм и при рН 6-8.

2. Способ по п.1, отличающийся тем, что осаждение арсенатов ведут из растворов с концентрацией ионов мышьяка, равной 0,5-1,0 мг/л.

3. Способ по п.1, отличающийся тем, что модифицированные катионным поверхностно-активным веществом кристаллы акаганеита с площадью поверхности 299-300 м2/г и максимальной сорбционной емкостью ионов мышьяка 328,3 мг As(III) /на грамм акаганеита получают путем сорбции катионного поверхностно-активного вещества - гексилдецил триметил аммония бромида (ГДТМВr) на акаганеите, осмоса на мембране М 45 и сублимационной сушки при комнатной температуре.



 

Похожие патенты:

Изобретение относится к гидрометаллургии цинка и может быть использовано для переработки цинксодержащих сернокислых растворов для получения оксида цинка. .

Изобретение относится к гидрометаллургии цинка и может быть использовано для переработки цинксодержащих отходов для получения оксида цинка. .

Изобретение относится к гидрометаллургическим способам очистки золотосодержащих цианистых растворов после десорбции золота от цветных металлов перед электроосаждением золота.

Изобретение относится к способу извлечения цветных металлов из водных растворов их солей и может быть использовано как для очистки отработанных растворов химического или гальванического никелирования от ионов никеля, кобальта, молибдена, вольфрама, ванадия висмута, так и для извлечения этих металлов из других растворов промышленного производства, а также для изготовления порошков указанных металлов или их суспензий.
Изобретение относится к гидрометаллургии благородных металлов и может быть использовано для разделения металлов при переработке солянокислых растворов, содержащих металлы платиновой группы, золото, сурьму и другие неблагородные элементы.

Изобретение относится к области гидрометаллургии цветных металлов и, в частности, к очистке сульфатных растворов, содержащих цветные металлы от железа. .
Изобретение относится к гидрометаллургии редких и благородных металлов, в частности к способам получения концентратов этих металлов из содержащих их кислых растворов.
Изобретение относится к гидрометаллургии редких и благородных металлов, в частности к способам получения концентрата, содержащего рений и платину, из содержащих их кислых растворов.
Изобретение относится к области металлургии благородных металлов, в частности к технологии селективного извлечения благородных металлов из растворов, содержащих цветные металлы.
Изобретение относится к гидрометаллургии цветных металлов, в частности к способам извлечения мышьяка из растворов, и может быть использовано для извлечения мышьяка из сточных вод металлургической, химической и других отраслей промышленности, а также в производстве металлов из вторичного сырья.

Изобретение относится к металлургии, а именно к извлечению мышьяка из руд и концентратов. .
Изобретение относится к технологии цветных, редких и рассеянных металлов. .

Изобретение относится к области цветной металлургии и может быть использовано для других отраслей промышленности, имеющих токсичные мышьяксодержащие материалы. .
Изобретение относится к порошковой металлургии и уничтожению химического оружия, в частности путем компактирования и очистки технического мышьяка, получаемого в ходе детоксикации люизита и адамита.
Изобретение относится к области получения элементного мышьяка, который используется в металлургии для легирования сплавов и придания им специфических свойств, в электронике - для изготовления полупроводников со специальными свойствами
Наверх