Способ переработки уран-молибденовой композиции

Изобретение относится к области гидрометаллургии, в частности к способу переработки уран-молибденовой композиции, представляющей собой брак и отходы ядерного производства. Сущность изобретения: способ переработки уран-молибденовой композиции включает окисление уран-молибденовой композиции при температуре 750-850°С, растворение композиции в 2-3-молярном растворе щелочи при температуре кипения, отделение раствора от твердого остатка декантацией, растворение твердого остатка в 4-6-молярной азотной кислоте при температуре кипения, пероксидное осаждение урана из раствора и прокаливание осажденной перекиси урана при температуре 750-850°С. Техническим результатом изобретения является повышение степени извлечения урана при переработке уран-молибденовой композиции. 1 табл.

 

Изобретение относится к области гидрометаллургии, в частности к способу переработки уран-молибденовой композиции, представляющей собой брак и отходы ядерного производства.

Известен способ переработки уран-молибденовой композиции, заключающийся в растворении композиции в смеси азотной кислоты и нитрата железа, экстракционном извлечении урана с последующим его аффинажем. («Переработка топлива энергетических реакторов», Сб. статей, Атомиздат, М., 1972, с.30-31, 37). Недостатками известного способа переработки уран-молибденовой композиции являются неэкономичность, связанная с использованием в большом количестве дорогостоящего нитрата железа, и неудовлетворительная степень извлечения урана из композиции из-за образования значительного объема отходов, содержащих урановую составляющую композиции.

Известен способ переработки уран-молибденовой композиции, заключающийся в растворении композиции в смеси азотной и фосфорной кислот, экстракционном извлечении урана из полученного раствора с последующим его аффинажем («Химическая технология облученного ядерного горючего», Атомиздат, М. 1971, с.125).

Недостатком известного способа переработки уран-молибденовой композиции является низкая концентрация урана в растворах (до 100 г/л), что влечет за собой значительное увеличение объемов отвальных отходов, нуждающихся в специальном захоронении.

Наиболее близким аналогом заявляемого изобретения по совокупности существенных признаков и назначению является способ переработки уран-молибденовой композиции, заключающийся в растворении уран-молибденовой композиции в 11-молярной азотной кислоте, отделении раствора от твердого остатка (молибденовой кислоты) путем фильтрации, растворении твердого остатка в щелочи, отделении твердых частиц урана центрифугированием и растворении их в азотной кислоте с последующей экстракцией, пероксидном осаждении урана и прокаливании осажденной перекиси урана при температуре 600°С с получением трехокиси урана (UO3). («Переработка ядерного горючего», Атомиздат, М., 1964, с.110, 554-559).

Недостатком этого способа переработки уран-молибденовой композиции является низкая степень извлечения урана из композиции, составляющая 92,4%

Целью данного изобретения является повышение степени извлечения урана при переработке уран-молибденовой композиции.

Технический результат достигается способом переработки уран-молибденовой композиции, включающим растворение композиции в азотной кислоте и щелочи, отделение раствора от твердого остатка, пероксидное осаждение урана из раствора и прокаливание осажденной перекиси урана, отличающимся от известного способа тем, что перед растворением композиции в азотной кислоте уран-молибденовую композицию окисляют при температуре 750-850°С и растворяют в 2-3-молярном растворе щелочи при температуре кипения, отделение раствора от твердого остатка осуществляют декантацией, урансодержащий твердый остаток растворяют в 4-6-молярной азотной кислоте при температуре кипения, а после пероксидного осаждения урана из раствора осажденную перекись урана прокаливают до закиси-окиси урана при температуре 750-850°С.

Сущность заявляемого способа переработки уран-молибденовой композиции заключается в том, что предварительное окисление уран-молибденовой композиции сопровождается образованием оксида молибдена - МoО3 и закиси-окиси урана - U3O8, а последующая обработка образовавшихся оксидов раствором щелочи позволяет полностью перевести оксид молибдена в раствор молибдата натрия, при этом закись-окись урана остается в виде твердого остатка.

Отделение раствора молибдата натрия от твердого остатка закиси-окиси урана осуществляют декантацией, что более предпочтительно, чем фильтрация или центрифугирование, т.к. исключает попадание урановой фазы в осветленный раствор (как в способе-прототипе - 0,05% от общего количества урана), а также потерю урана на фильтрах. Растворению в азотной кислоте подвергается закись-окись урана, которая полностью переходит в раствор в виде уранилнитрата, при этом остатки молибденовой кислоты уже не препятствуют растворению урана, как в известном способе, что повышает степень его извлечения из уран-молибденовой композиции. Последующая пероксидная очистка позволяет очистить уран от остатков молибдена и после прокаливания перекиси урана получить конечный товарный продукт - закись-окись урана с высокой степенью извлечения урана из композиции уран-молибден.

Параметры процесса переработки уран-молибденовой композиции установлены экспериментально и имеют следующее обоснование. Окисление уран-молибденовой композиции при температуре 750-850°С имеет целью перевод молибдена в оксид МоO3, хорошо растворимый в щелочи, и урана в закись-окись урана, нерастворимую в щелочи, но растворимую в азотной кислоте. При температуре менее 750°С окисление молибдена происходит до смеси оксидов МоО3 и МоO2. Последний плохо растворяется в щелочи, что приводит к захвату урана и, следовательно, снижению степени его извлечения на последующих стадиях переработки. При температуре более 850°С начинается диссоциация МoО3 до низших оксидов, малорастворимых в щелочи и захватывающих уран.

В процессе обработки оксидов молибдена и урана 2-3-молярным раствором щелочи при температуре кипения происходит растворение МoО3 с образованием раствора молибдата натрия, а закись-окись урана остается в осадке. При снижении молярности раствора щелочи менее 2 скорость растворения МoО3 - мала. Избыток щелочи (молярность более 3) приводит к перерасходу как самой щелочи, так и азотной кислоты для ее нейтрализации на стадии растворения закиси-окиси урана. Проведение растворения МoО3 в растворе щелочи ниже температуры кипения значительно увеличивает продолжительность процесса, т.к. скорость реакции при этом падает.

Отделение раствора от твердого остатка методом декантации исключает потери урана на этой стадии переработки уран-молибденовой композиции, поскольку декантированный раствор не содержит урана. Кроме того, такой раствор проще утилизировать.

Последующее растворение урансодержащего осадка в 4-6-молярной азотной кислоте при температуре кипения сопровождается нейтрализацией остатков щелочного раствора молибдата и полным переводом закиси-окиси урана в раствор в виде уранилнитрата. Растворение в азотной кислоте проводят при температуре кипения, т.к. при этом достигается максимальная интенсивность процесса. При уменьшении молярности азотной кислоты менее 4 скорость растворения закиси-окиси урана невелика, что удлиняет продолжительность процесса. Использование более концентрированной азотной кислоты (молярность более 6) приводит к очень бурному протеканию реакции с выделением большого количества окислов азота, что снижает экологическую безопасность переработки.

В процессе пероксидного осаждения урана происходит его очистка от остатков молибдена и микропримесей, содержащихся в исходной уран-молибденовой композиции. Осадок перекиси урана прокаливают до товарной закиси-окиси урана при температуре 750-850°С. В указанном диапазоне температур существует только одна стабильная фаза оксида урана - закись-окись урана. При температурах менее 750°С и более 850°С фаза U3O8 содержит другие фазы оксида урана, такие как UO3, U3O8-х.

Предложенный способ переработки уран-молибденовой композиции иллюстрируется следующим примером.

Пример:

Отходы U-Mo композиции, содержащие 9% Mo, в виде прутков, брикетов, стружки или порошка массой 1,0 кг засыпали ровным слоем в лодочку и помещали в муфельную печь. Печь закрывали и устанавливали проток воздуха 70-100 л/час по ротаметру. Включали автоматический режим нагрева и с помощью терморегулятора задавали требуемую температуру окисления - 800±50°С.

При этом происходило окисление основных компонентов композиции по реакциям:

3U+402=U3O8

2Мо+3O2=2МоO3

Навеску оксидов урана и молибдена общей массой 500 г засыпали в реактор из нержавеющей стали объемом 5 л. Туда же заливали ~600 мл 2-3-молярного предварительно приготовленного раствора щелочи (NaOH). Содержимое реактора нагревали до температуры кипения раствора щелочи и при периодическом перемешивании процесс растворения трехокиси молибдена в щелочи вели в течение 40-50 минут, что соответствовало реакции:

МоО3+2NaOH=Na2MoO4

Вся трехокись молибдена в результате взаимодействия со щелочью переходит в раствор молибдата натрия, а уран остается в исходном виде - порошок закиси-окиси.

После отстаивания щелочной раствор молибдата натрия отделяли от порошка декантацией, собирали в пластиковые емкости объемом 5 л и отправляли на утилизацию. В реактор с порошком закиси-окиси урана заливали ~ 1,5 л 4-6-молярной азотной кислоты. Порошок растворяли при температуре кипения в течение 50-60 минут, периодически перемешивая содержимое реактора, что описывается реакциями:

U3O8+8 HNO3=3 UO2(NO3)2+2 NO2↑+4H2O,

3 U308+20 HNO3=9 UO2(NO3)2+2NO↑+10H2O,

после чего из полученного раствора уранилнитрата проводили пероксидное осаждение урана в соответствии с реакцией:

UO2(NO3)22O2+2 Н20=UO4×2Н2O↓+2HNO3,

а влажный осадок перекиси урана прокаливали в муфельной печи при температуре 750-850°С. Соответствующая реакция:

3 UO4×2 Н2O=U3O8+2 Н2O+2O2

Полученный продукт переработки уран-молибденовой композиции представляет собой товарную закись-окись урана.

В таблице приведены примеры осуществления предложенного способа переработки уран-молибденовой композиции на граничные и промежуточные значения параметров, а также на параметры процесса, выходящие за заявляемые пределы, в сопоставлении с известным способом.

Как следует из приведенных в таблице данных, предложенный способ переработки уран-молибденовых композиции (примеры 1-3) обеспечивает в сравнении с известным способом (пример 6) повышение степени извлечения урана из композиции.

Осуществление предложенного способа за пределами заявляемых параметров (примеры 4, 5) приводит к снижению степени извлечения урана.

Таблица
Примеры осуществления заявленного способа
№№ примеров Окисление композиции U-Mo Обработка в растворе кипящей щелочи Растворение в растворе кипящей HNO3 Прокаливание UO4×2H2O Степень извлечения урана из композиции, %
Температура окисления, °С Концентрация щелочного раствора, моль/л Концентрация раствора азотной кислоты, моль/л Температура прокалки, °С
1 750 2 4 750 98,8
2 800 2,5 5 800 98,9
3 850 3 6 850 98,1
4 700 1 3 700 92,0
5 900 4 7 900 92,2
6 известный способ - 4 11 600 92,4

Способ переработки уран-молибденовой композиции, включающий растворение композиции в азотной кислоте и щелочи, отделение раствора от твердого остатка, пероксидное осаждение урана из раствора и прокаливание осажденной перекиси урана, отличающийся тем, что перед растворением композиции в азотной кислоте уран-молибденовую композицию окисляют при температуре 750-850°С и растворяют в 2-3-молярном растворе щелочи при температуре кипения, отделяют раствор от твердого остатка декантацией, урансодержащий твердый остаток растворяют в 4-6-молярной азотной кислоте при температуре кипения, а после пероксидного осаждения урана из раствора осажденную перекись урана прокаливают при температуре 750-850°С.



 

Похожие патенты:
Изобретение относится к области гидрометаллургии, в частности к способам переработки отходов уран-циркониевых композиций в виде невостребованных твэлов, брака и отходов их производства с целью извлечения урана и последующего его использования в производстве ядерного топлива.

Изобретение относится к области металлургии, в частности к способам переработки топливных композиций в виде невостребованных твэлов и брака и отходов их производства с целью получения оксида урана и последующего его использования в производстве.
Изобретение относится к области гидрометаллургии, в частности к способам переработки урансодержащих топливных композиций, представляющих собой невостребованные твэлы, брак и отходы их производства с целью извлечения урана и последующего его использования в производстве ядерного топлива.

Изобретение относится к атомной промышленности и может быть использовано на радиохимических заводах по регенерации ядерного топлива отработавших ТВС. .

Изобретение относится к области металлургии. .
Изобретение относится к технологии переработки отработавшего (облученного) твердого ядерного топлива ядерных реакторов - диоксида урана - металлургическим способом с целью его дальнейшего безопасного хранения.
Изобретение относится к области ядерной энергетики, в частности к технологии переработки бракованных и невостребованных твэлов с алюминиевой оболочкой и сердечником из уран-алюминиевой композиции.
Изобретение относится к технологии переработки твердого облученного ядерного топлива (ОЯТ) в виде разнородных урансодержащих топливных композиций (металлических, карбидных, оксидных и др.) с целью его дальнейшего возврата в ядерно-топливный цикл.
Изобретение относится к способам регенерации оборотного экстрагента и может быть использовано в технологии переработки облученного ядерного горючего. .

Изобретение относится к способу регенерации отработанного топлива
Изобретение относится к области переработки твердых оксидных материалов, в том числе к переработке отработанного ядерного топлива - диоксида урана с целью его дальнейшей безопасной переработки

Изобретение относится к переработке облученного ядерного топлива, для извлечения плутония, нептуния, америция, кюрия и возможно урана, присутствующих в следовых количествах, суммарным, но селективным в отношении лантаноидов способом, из раствора для разложения облученного ядерного топлива после проведения цикла экстракции

Изобретение относится к области гидрометаллургии, в частности к способу переработки уран-молибденовой композиции, представляющей собой брак и отходы ядерного производства. Способ переработки уран-молибденовой композиции согласно изобретению включает окисление уран-молибденовой композиции при температуре 750-850°С, растворение композиции в 2-3-молярном растворе щелочи при температуре кипения, отделение раствора от твердого остатка декантацией, растворение твердого остатка в 4-6-молярной азотной кислоте при температуре кипения, переочистку раствором щавелевой кислоты из расчета на 1 кг урана 0,75-1,0 кг щавелевой кислоты при температуре 60-80°С в течение 30-40 мин, промывку осадка оксалата уранила 2-3% раствором щавелевой кислоты, отделение урансодержащего твердого остатка фильтрованием, прокаливание при температуре 750-850°С. Изобретение позволяет повысить степень очистки закиси-окиси урана от молибдена. 1 табл.

Изобретение относится к области гидрометаллургии урана и может быть использовано при его регенерации в результате химической переработки отработанных, бракованных или невостребованных твэлов. Способ переработки уран-циркониевых отходов в виде твэлов заключается в том, что исходные твэлы подвергают фрагментации и окисляют на воздухе при температуре 1000-1250°C до прекращения изменения веса. Окисленные фрагменты обрабатывают (3-6)N азотной кислотой при соотношении реагирующих фаз Т:Ж=1:(3÷6) в течение 4-6 часов при температуре 70-90°C. Затем осуществляют фильтрацию и извлечение урана из раствора. Изобретение позволяет существенно снизить скорость коррозии аппаратуры за счет селективного растворения урана, обеспечивает более чем 98% извлечение урана без использования плавиковой кислоты и, кроме того, существенно оптимизирует процесс переработки. 3 з.п. ф-лы, 1 табл.

Изобретение относится к радиохимической технологии и может быть использовано в процессах производства смешанного оксидного ядерного топлива и переработки отработавшего ядерного топлива. Сущность изобретения заключается в укрупнении зерна осадка путем интеграции в его состав органического компонента при осаждении пероксидных соединений урана и плутония в присутствии аминокислоты, использовании в восстановительном процессе продуктов термического разложения аминокислоты с полным их удалением в газовую фазу в результате термообработки в газовом потоке, содержащем пары муравьиной кислоты. Изобретение позволяет упростить и повысить безопасность технологического процесса. 11 з.п. ф-лы, 1 табл.
Наверх