Линейный резонансный ускоритель

Изобретение относится к технике ускорителей для радиационных технологий с выводом электронов из корпуса ускорителя, которые могут быть использованы в новых плазменно-химических технологиях. Линейный резонансный ускоритель содержит резонатор в виде коаксиальной линии задержки и систему ее возбуждения. Последняя включает генератор, систему катодов и вакуумных окон для вывода пучка электронов в атмосферу. Линия задержки выполнена из тороидальных катушек индуктивности. Каждая катушка снабжена металлическим экраном для экранирования радиального электрического поля коаксиального резонатора. Генератор, через фидер, имеет возможность подключения к началу линии задержки. Изобретение позволяет понизить резонансную частоту и использовать для возбуждения резонатора генератор-преобразователь постоянного напряжения в переменное напряжение на базе транзисторов. 2 з.п. ф-лы, 1 ил.

 

Область техники

Изобретение относится к области ускорительной техники, а именно к технике ускорителей для радиационных технологий с выводом электронов из корпуса ускорителя, которые могут быть использованы в новых плазменно-химических технологиях и, в частности, в технологиях по модификации и получению новых материалов, дезинфекции медицинских и других изделий, очистке промышленных и медицинских отходов, защите окружающей среды.

Уровень техники

Известны линейные резонансные ускорители, которые содержат резонатор в виде коаксиальной линии задержки с внутренним проводником в виде цилиндрической спирали, систему возбуждения в виде первичной низковольтной обмотки, питаемой переменным током, системы катодов и вакуумных окон для вывода пучка электронов в атмосферу (см. "Multi-beam Electron Accelerator fort Industrial Application" Proceedings of European Particle Accelerator Conference, Viena, 26-30 June, 2000, p.2600; G.V.Dolbilov, G.I.Dolbilova, I.N.Ivanov, A.V.Mazhulin, JINR, Dubna, Russia; T.Ruskov, INRNE, Sofia, Bolgaria; "Multi-beam Electron Accelerator for Radiation Processing", Proceedings of 2001 Particle Accelerator Conference, 2001, Hyatt Regency, Chicago, Illinois, U.S.A., June 18-22, 2001, p.651; G.V.Dolbilov, G.I.Dolbilova, I.N.Ivanov, A.V.Mazhulin, V.N.Razuvakin; Joint Institute for Nuclear Research, Dubna, 141980, Russia; "High Repetition Pulsed Accelerator for ЕВ-Technology", Proceedings of a Symposium on Radiation Technology for conservation of the environment, 8-12 September 1997, p.453, Zakopane, Poland. G.V.Dolbilov, G.I.Dolbilova, A.A.Fateev, I.N.Ivanov, N.I.Lebedev, A.V.Mazhulin, V.A.Petrov, I.M.Hohlov. Joint Institute for Nuclear Research, Dubna, Russian Federation; T.Ruskov, Institute of Nuclear Research and Nuclear Energy, P.Goranov, Technical University, Sofia, Bolgaria; "High Repetition Pulsed Accelerator for Industrial Application", Труды II Научного семинара памяти В.П.Саранцева, Дубна, 23-24 сентября 1997, Г.В.Долбилов и др.; Multi-Beam Pulsed Accelerator for Electron Beam Prisesssing, Proceedings of 6th European Particle Accelerator Conference, Stockholm, 22-26 June, 1998, p.2398, G.V.Dolbilov, G.I.Dolbilova, A.A.Fateev, I.N.Ivanov, N.I.Lebedev, A.V.Mazhulin, V.A.Petrov, I.M.Hokhlov, JINR, Dubna, Russia, T.Ruskov, INRNE, P.Goranov, TU, Sofia, Bolgaria). Первичная обмотка и наружный проводник резонатора в таких ускорителях расположены на диэлектрическом вакуумном корпусе ускорителя.

Наиболее близким к предлагаемому изобретению является резонансный ускоритель, описанный в работе "Multi-beam Electron Accelerator fort Industrial Application" Proceedings of European Particle Accelerator Conference, Viena, 26-30 June, 2000, p.2600; G.V.Dolbilov, G.I.Dolbilova, I.N.Ivanov, A.V.Mazhulin, JINR, Dubna, Russia; T.Ruskov, INRNE, Sofia, Bolgaria (прототип). Он состоит из коаксиального резонатора на базе линии задержки, возбуждаемого первичными витками, расположенными на диэлектрическом вакуумном кожухе. Внутренний проводник резонатора представляет собой цилиндрическую спираль, намотанную на диэлектрический стержень, внешний проводник резонатора расположен на вакуумном кожухе ускорителя. На высоковольтном конце внутреннего проводника расположена система катодов. Каждый катод имеет свое собственное вакуумное окно для вывода пучка в атмосферу.

Прототип и ускорители, описанные в вышеуказанных работах, имеют один общий недостаток, который заключается в том, что интенсивный аксиальный магнитный поток и рассеянные магнитные поля индуцируют токи в деталях ускорителя и в оснастке и радиационной защите, окружающей ускоритель. Это приводит к дополнительным потерям мощности и нагреву электропроводящих деталей и узлов установки. Кроме того, проводник внутреннего электрода, находясь в вакуумном объеме, не защищен от воздействия вторичных частиц, которые могут нарушить изоляцию проводника и снизить надежность ускорителя.

Раскрытие изобретения

Изобретение решает задачу уменьшения потерь мощности, повышения КПД и надежности ускорителя.

Поставленная цель достигается тем, что линейный резонансный ускоритель содержит резонатор, выполненный на основе коаксиальной линии задержки, систему ее возбуждения, включающую генератор, систему катодов и вакуумных окон; линия задержки выполнена из тороидальных катушек индуктивности, при этом каждая катушка снабжена металлическим экраном, а генератор, через фидер, имеет возможность подключения к началу линии задержки; каждая тороидальная катушка состоит из двух полуобмоток, которые соединены параллельно, а намотки полуобмоток имеют взаимно противоположное направление; количество тороидальных катушек определяется соотношением N=(π/2)·(Uуск/ΔU), где Uуск - заданная величина ускоряющего напряжения, ΔU - максимально допустимое напряжение между обмотками катушек, которое определяется типом изоляционного материала (жидкого или газообразного), конкретной конструкцией тороидальных катушек и расстоянием между ними.

Отличительными признаками изобретения является следующее: линия задержки выполнена из тороидальных катушек индуктивности, при этом каждая катушка снабжена металлическим экраном, а генератор, через фидер, имеет возможность подключения к началу линии задержки;

каждая тороидальная катушка состоит из двух полуобмоток, которые соединены параллельно, а намотки полуобмоток имеют взаимно противоположное направление;

количество тороидальных катушек определяется соотношением N=(π/2)·(Uуск/ΔU), где Uуск - заданная величина ускоряющего напряжения, ΔU - максимально допустимое напряжение между обмотками катушек, которое определяется типом изоляционного материала (жидкого или газообразного), конкретной конструкцией тороидальных катушек и расстоянием между ними.

Внутренний проводник линии задержки выполнен из тороидальных катушек индуктивности, что позволяет ликвидировать аксиальную составляющую магнитного потока и рассеянные магнитные поля, т.к. магнитное поле тороидальных катушек имеет азимутальную составляющую и сосредоточено внутри объема катушек. Это позволяет исключить индуцирование токов в электропроводящих элементах конструкции ускорителя, их нагрев, потери мощности и приводит к увеличению коэффициента полезного действия ускорителя.

Каждая катушка снабжена металлическим экраном для экранирования радиального электрического поля коаксиального резонатора, что позволяет уменьшить напряженность электрического поля в катушках и увеличить надежность ускорителя.

Генератор, через фидер, имеет возможность подключения к началу линии задержки, что позволяет возбуждать коаксиальный резонатор.

Каждая тороидальная катушка состоит из двух полуобмоток, которые соединены параллельно, что позволяет уменьшить напряженность электрического поля между началом и концом обмотки тороидальной катушки и увеличить надежность ускорителя.

Намотки полуобмоток имеют взаимно противоположное направление для согласования их магнитных потоков.

Количество тороидальных катушек определяется соотношением N=(π/2)·(Uуск/ΔU), где Uуск - заданная величина ускоряющего напряжения, ΔU - максимально допустимое напряжение между обмотками катушек, которое определяется типом изоляционного материала (жидкого или газообразного), конкретной конструкцией тороидальных катушек и расстоянием между ними. Это позволяет обеспечить необходимую электрическую прочность системы и увеличить надежность ускорителя.

Совокупность вышеуказанных признаков позволяет устранить аксиальный магнитный поток и рассеянные магнитные поля, уменьшить потери мощности, повысить КПД и надежность ускорителя.

Описание чертежа

Схема ускорителя приведена на чертеже, где:

(1) - внешний проводник линии задержки коаксиального резонатора (вакуумный кожух ускорителя);

(2) - диэлектрический «стакан»;

(3) - тороидальные катушки внутреннего проводника линии задержки;

(4) - металлические экраны;

(5) - катодный электрод с системой катодов;

(6) - вакуумные окна;

(7) - фидер;

(8) - генератор переменного тока.

Металлический вакуумный кожух (1) является внешним проводником коаксиального резонатора (линии задержки). Внутри вакуумного кожуха расположен диэлектрический стакан (2), внутри которого расположены последовательно соединенные тороидальные катушки (3), снаружи стакана находятся металлические экраны (4). Металлические экраны имеют гальваническую связь с выводами тороидальных катушек. Катодный электрод (5), на котором находится система холодных катодов, расположен на торцевой части диэлектрического стакана (2). Вакуумные окна (6) расположены на торцевой части вакуумного кожуха. Фидер (7) генератора переменного тока (8) подключен к началу линии задержки резонатора.

Осуществление изобретения

Устройство работает следующим образом.

Генератор (8) посредством фидера (7), подключенного к входу линии задержки, возбуждает ток во внутреннем (3) и внешнем (1) проводниках линии задержки. На резонансной частоте, когда электрическая длина волны в линии задержки равна четырем геометрическим длинам линии, входной импеданс линии падает, а ток и напряжение в линии возрастают. В резонансе ток и напряжение по длине линии изменяются по закону I(z)=I0Coskz, U(z)=I0ρSinkz, где I0 - ток на входе в линию задержки, ρ - волновой импеданс линии, k=2π/λ - постоянная распространения волны в линии, λ - длина волны в линии задержки, z - аксиальная координата линии. При длине лини z=L=λ/4 напряжение на высоковольтном конце линии равно U(L)=Uуск=I0ρ. Например, при волновом импедансе линии ρ=100 кОм и токе на входе лини I0=5 А напряжение на высоковольтном конце линии равно U(L)=500 кВ.

На выходе коаксиальной линии расположен катодный электрод с системой холодных катодов (5). Ток пучка каждого электрода выводится в атмосферу через свое собственное окно (6). Малый размер холодных катодов и соответствующих им окон позволяют использовать предельно тонкие металлические фольги окон и уменьшить потери энергии электронов при их выводе в атмосферу. Металлические экраны (4) защищают катушки (3) от радиального электрического поля резонатора. Диэлектрический стакан (2) может отсутствовать, если в качестве изоляции катушек (3) используется вакуумная изоляция. Вариант газообразной или жидкой изоляции требует использования вакуумно-плотного диэлектрического стакана.

Пример конкретного выполнения

Обмотки тороидальных катушек индуктивности выполнены из медного провода с изоляцией. Диаметр провода зависит от выбранного числа витков, которое определяет волновой импеданс линии задержки.

Генератор представляет собой транзисторный преобразователь постоянного тока в переменный. Металлические экраны выполнены из меди или нержавеющей стали.

Количество тороидальных катушек в линии задержки определяется максимально допустимым напряжением между обмотками катушек ΔU, которое зависит от типа изоляционного материала (жидкого или газообразного), конкретной конструкции тороидальных катушек и расстояния между ними N=(π/2)·(Uуск/ΔU). Например, при Uуск=500 кВ и ΔU=50 кВ потребуется 15-16 катушек. Вакуумные окна выполнены из тонкой металлической фольги. Например, для окон диаметром 3 см толщина титановой фольги может быть равна 10-15 мкм.

Система катодов представляет собой набор равномерно расположенных малых катодов, причем каждый катод имеет свое собственное вакуумное окно. При использовании холодных катодов с пороговыми эмиссионными характеристиками и соответствующим выбором величины напряженности электрического поля на поверхности катодов эмиссия электронов будет происходить только при напряжениях выше порогового значения. Соотношение между пороговым и максимальным значениями напряжения регулируются путем изменения максимального напряжения на поверхности катодов, определяемого расстоянием анод-катод.

1. Линейный резонансный ускоритель, содержащий резонатор в виде коаксиальной линии задержки, систему ее возбуждения, включающую генератор и систему катодов и вакуумных окон для вывода пучка электронов в атмосферу, отличающийся тем, что линия задержки выполнена из тороидальных катушек индуктивности, при этом каждая катушка снабжена металлическим экраном для экранирования радиального электрического поля коаксиального резонатора, а генератор через фидер имеет возможность подключения к началу линии задержки.

2. Линейный резонансный ускоритель по п.1, отличающийся тем, что каждая тороидальная катушка состоит из двух полуобмоток, которые соединены параллельно, а намотки полуобмоток имеют взаимно противоположное направление для возможности согласования их магнитных потоков.

3. Линейный резонансный ускоритель по п.1, отличающийся тем, что количество тороидальных катушек определяется соотношением N=(π/2)·(Uуск/ΔU), где Uуск - заданная величина ускоряющего напряжения, ΔU - максимально допустимое напряжение между обмотками катушек, которое определяется типом изоляционного материала (жидкого или газообразного), конкретной конструкцией тороидальных катушек и расстоянием между ними.



 

Похожие патенты:

Изобретение относится к ускорительной технике и может быть использовано при создании резонансных ускорителей промышленного назначения. .

Изобретение относится к области физики и техники пучков заряженных частиц, конкретно к технике линейных ускорителей. .

Изобретение относится к области технической физики, а именно к ускоряющим структурам линейных резонансных ускорителей ионов, и предназначено для ускорения легких ионов в малогабаритных транспортных генераторах нейтронов.

Изобретение относится к области технической физики, в частности к линейным индукционным ускорителям заряженных частиц, и может быть использовано для генерации нейтронных потоков.

Изобретение относится к линейным ускорителям с дрейфовыми трубами и может быть использовано для ускорения пучков ионов низкой энергии. .

Изобретение относится к области ускорительной техники, может быть использовано для двухстороннего одновременного облучения объектов. .

Изобретение относится к электронной и ускорительной технике, в частности к импульсным высокочастотным (ВЧ) ускорителям заряженных частиц, например электронов или ионов, может быть использовано в качестве резонаторного ускоряющего устройства для сверхэнергетичного ускорителя заряженных частиц, например циклического типа.

Изобретение относится к области ускорительной техники и может быть использовано для генерации электронных или ионных пучков микросекундной длительности с высокой частотой следования импульсов.

Изобретение относится к ускорительной технике и может быть использовано для генерации электронных и ионных пучков микросекундной длительности с высокой частотой следования импульсов

Изобретение относится к ускорительной технике и может быть использовано в линейных индукционных ускорителях сильноточных (более 1 кА) импульсных (менее 1 с) пучков электронов при их ускорении и/или транспортировке в протяженных (более 1 м) вакуумных трактах

Изобретение относится к области физики пучков заряженных частиц и ускорительной техники, в частности к технологии ускорения электронов в импульсном линейном ускорителе с регулируемой энергией пучка, более конкретно к способу генерации тормозного излучения с поимпульсным переключением энергии и к конструкции линейного ускорителя электронов, предназначенного для досмотровых комплексов

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований

Изобретение относится к области физики и техники пучков заявленных частиц, конкретно к технике линейных ускорителей. Заявленный линейный ускоритель электронов может быть использован в области физики, медицины и радиационных технологий стерилизации медицинских изделий, рентгенографической инспекции крупногабаритных грузов, контроля толстостенных металлических объектов. Ускоритель содержит инжектор электронов, ускоряющий резонатор в виде бипериодической цепочки связанных ячеек, сверхвысокочастотный генератор, устройства вакуумной откачки, питания и управления. С целью использования ускорителя с СВЧ генераторами разной мощности без замены ускоряющего резонатора в ячейку ввода СВЧ мощности вводят плунжер для перестройки ее резонансной частоты, а размеры щели связи регулируются с помощью съемных контактных пластин. Техническим результатом является повышение надежности и срока службы, увеличение длительности непрерывной работы, возможность использования различных СВЧ источников для получения пучков электронов с различной мощностью. 1 ил.

Изобретение относится к ускорителю для ускорения заряженных частиц. Заявленное устройство содержит множество линий задержки, которые проходят к траектории луча и которые в направлении траектории луча размещены друг за другом, причем по меньшей мере некоторые из линий задержки по отношению к траектории луча повернуты относительно друг друга. Техническим результатом является оптимизация ускоряющего потенциала. 10 з.п. ф-лы, 5 ил.

Импульсный ионный ускоритель предназначен для получения мощных пучков заряженных частиц. Ускоритель содержит генератор импульсного напряжения (1) и установленные в корпусе основной и предварительный газовые разрядники (4, 7), двойную формирующую линию, средний электрод (3) которой соединен с генератором импульсного напряжения (1) и через основной газовый разрядник (4) с корпусом ускорителя, а также вакуумный полосковый диод, потенциальный электрод (6) которого соединен через предварительный газовый разрядник (7) с внутренним электродом (5) двойной формирующей линии. В заземленном электроде основного газового разрядника (4) установлен дополнительный запускающий электрод (12), соединенный через линию задержки (10) с выходом двойной формирующей линии. Технический результат - повышение стабильности напряжения пробоя основного газового разрядника в серии импульсов. 5 ил., 1 табл.

Изобретение относится к области ускорительной техники. Способ регулировки ускорителя на стоячей волне включает в себя следующие стадии: генерирование пучка электронов с помощью электронной пушки; введение пучка электронов в ускорительную трубку; и регулирование источника СВЧ-излучения для генерирования и ввода микроволн разной частоты в ускорительную трубку с тем, чтобы в ускорительной трубке обеспечивалось переключение между разными резонансными модами с заданной частотой с целью генерирования пучков электронов, обладающих соответствующей энергией. Технический результат - возможность регулирования энергии пучков электронов, не внося никаких изменений в конструкцию системы ускорения. 2 н. и 7 з.п. ф-лы, 8 ил.

Изобретение относится к области ускорительной техники. Система СВЧ-излучения с двумя трактами; при этом один тракт может быть напрямую соединен с ускорительной трубкой, а второй тракт может быть подведен к ускорительной трубке после того, как величина мощности СВЧ-излучения будет изменена устройством регулирования мощности, таким как аттенюатор, делитель мощности, компрессор импульсов или усилитель. Технический результат - быстрое переключение мощности, вводимой в ускорительную трубку, и регулирование выходной энергии ускорителем. 8 з.п. ф-лы, 1 ил.
Наверх