Установка для диффузионной сварки

Изобретение относится к оборудованию для сварки с подогревом, в частности к установкам для диффузионной сварки полупроводников с диэлектриками, и может быть использовано в радиотехнической, электронной и приборостроительной промышленности. Установка содержит камеру нагрева (1), нагреватели (2), токоведущие шины (3), изоляторы (4) и пакетное устройство, состоящее из системы сжатия узлов-заготовок (5), нижней (8) и верхней (9) токопроводящих плит. Биметаллическая пластина (11) закреплена в камере нагрева (1) и выполнена из материалов с различными температурными коэффициентами линейного расширения. Один конец металлической вставки (10) соединен с биметаллической пластиной (11), а другой ее конец расположен между узлами-заготовками (5). Изобретение направлено на повышение качества соединяемых деталей за счет обеспечения требуемой степени вакуума. 2 ил.

 

Изобретение относится к оборудованию для сварки с подогревом, в частности к установкам для диффузионной сварки полупроводников с диэлектриками, и может быть использовано в радиотехнической, электронной и приборостроительной промышленности.

Известна установка для диффузионной сварки, содержащая термошкаф с рабочим столом, токоведущие шины, изоляторы, пакетное устройство, состоящее из систем сжатия узлов-заготовок, нижней, верхней и средней токопроводящих плит, токопроводящие и изолированые болты, сжимающие плиты, причем в среднюю токопроводящую плиту встроен двусторонний нагреватель [1].

Наиболее близким по технической сущности к изобретению является установка для диффузионной сварки, снабженная дополнительным нагревателем, размещенным в центре зоны расположения узлов-заготовок, и дополнительным регулируемым источником питания. На нижней токопроводящей плите пакетного устройства установлены вставки и выполнено сквозное отверстие, в котором закреплена термопара. Боковая поверхность дополнительного нагревателя выполнена в виде рефлектора, концентрирующего тепловое воздействие в зоне расположения узлов-заготовок. Вставки выполнены из меди с антиоксидным покрытием хром-никель. Регулирование величины нагрева осуществляется дополнительным источником питания в соответствии с показаниями термопары [2].

Общим недостатком аналога и прототипа является невозможность достижения степени вакуума в вакуумированной полости между узлами-заготовками выше, чем 1·10-2 мм рт.ст. вследствие сопровождающего процесс диффузионной сварки поджатия полированных поверхностей узлов-заготовок в местах их соприкосновения, способствующего образованию вакуумплотного барьера, не позволяющего обеспечить требуемую степень вакуума, и ограничивающего качество сборки.

В процессе диффузионной сварки в вакууме, когда происходит откачка газовой среды из камеры нагрева, экспериментальным путем установлено, что после достижения в вакуумированной полости между узлами-заготовками давления 1·10-2 мм рт.ст., уменьшение значения давления в камере нагрева до 1·10-8 мм рт.ст. и увеличение времени выдержки узлов-заготовок в ней, по крайней мере, до 4 часов, не приводит к изменению давления внутри вакуумированной полости между узлами-заготовками.

Образование вакуумплотного барьера объясняется уменьшением зазора между узлами-заготовками до значения, когда размер молекул газовой среды в вакуумированной полости между узлами-заготовками становится больше, чем зазор. В этом случае давление в вакуумированной полости между узлами-заготовками определяется оставшимися молекулами газовой среды. Как уже сказано выше, при откачке воздуха это значение составляет 1·10-2 мм рт.ст. В процессе последующей диффузионной сварки, проводящейся при нагреве и механическом поджатии деталей, подключении к ним электрического потенциала 300…1000 В [3, 4], между узлами-заготовками образуются связь типа ковалентной с энергией от 500 до 5000 кДж/моль, сохраняющая давление в вакуумированной полости между узлами-заготовками не ниже 1·10-2 мм рт.ст., что является неприемлемым для многих практических применений, например создания преобразователей давления на диапазоны измерения менее 1·10-2 мм рт.ст., а также создания преобразователей с температурным диапазоном от минус 100 до 600°С (при повышении температуры наличие остаточных молекул газовой среды, из-за ее температурного расширения в вакуумированной полости между узлами-заготовками, вызовет прогиб мембраны со стороны, обратной измеряемому давлению, а значит и воздействие на измерительную схему, что привнесет дополнительную погрешность).

Изобретение направлено на повышение качества соединяемых деталей за счет обеспечения требуемой степени вакуума.

Согласно изобретению установка для диффузионной сварки, содержащая камеру нагрева, нагреватели, токоведущие шины, изоляторы и пакетное устройство, состоящее из систем сжатия узлов-заготовок, нижней и верхней токопроводящих плит, дополнительно снабжена биметаллической пластиной, закрепленной в камере нагрева и выполненной из материалов с различными температурными коэффициентами линейного расширения, и металлической вставкой, один конец которой соединен с биметаллической пластиной, а другой конец расположен между узлами-заготовками.

Введение биметаллической пластины, закрепленной в камере нагрева и выполненной из материалов с различными температурными коэффициентами линейного расширения, и металлической вставки, один конец которой соединен с биметаллической пластиной, а другой конец расположен между узлами-заготовками, позволяет путем исключения вакуумплотного барьера достичь в вакуумированной полости между узлами-заготовками необходимой степени вакуума, равной ее значению в камере нагрева. В процессе диффузионной сварки, заключающемся в создании вакуума в камере нагрева, нагреве внутреннего пространства камеры нагрева до температуры t1, биметаллическая пластина изменяет свою конфигурацию, принимая форму дуги окружности, и металлическая вставка, закрепленная одним концом с биметаллической пластиной, выходит из контакта между узлами-заготовками, и способствует закрытию зазора между ними. В дальнейшем, в процессе продолжающейся диффузионной сварки, благодаря повышению температуры до t2 и прикладываемому определенному электрическому потенциалу, происходит механическое поджатие узлов-заготовок, с образованием между ними связи типа ковалентной с высокой энергией соединения.

На фиг.1 изображена установка для диффузионной сварки.

На фиг.2 изображена установка для диффузионной сварки в процессе работы.

Установка состоит из камеры нагрева (1), нагревателей (2), токоведущих шин (3), изоляторов (4) и пакетного устройства, состоящего из системы сжатия узлов-заготовок (5), включающей основание (6) и подвижные опоры (7), нижней (8) и верхней (9) токопроводящих плит. Установка дополнительно снабжена биметаллической пластиной (11), закрепленной в камере нагрева и выполненной из материалов с различными температурными коэффициентами линейного расширения, и металлической вставкой (10), один конец которой соединен с биметаллической пластиной, а другой конец расположен между узлами-заготовками.

Принцип работы установки заключается в следующем.

На монтажном столе вне установки с помощью центрирующих приспособлений собираются соединяемые узлы-заготовки (5), устанавливаются в пакетное устройство, которое расположено в камере нагрева (1) так, чтобы один из концов металлической вставки (10) был расположен между узлами-заготовками (5). В то время как другой конец соединен с биметаллической пластиной (11), закрепленной в камере нагрева (1). Затем проводят процесс диффузионной сварки узлов-заготовок (5), заключающийся в создании вакуума в камере нагрева, нагреве внутреннего пространства камеры нагрева до температуры t1. Биметаллическая пластина изменяет свою конфигурацию, принимая форму дуги окружности, и металлическая вставка, закрепленная одним концом с биметаллической пластиной, выходит из контакта между узлами-заготовками, и способствует закрытию зазора между ними. В дальнейшем, в процессе продолжающейся диффузионной сварки, благодаря повышению температуры до t2 и прикладываемому определенному электрическому потенциалу, происходит механическое поджатие узлов-заготовок, с образованием между ними связи типа ковалентной с высокой энергией соединения.

Таким образом, дополнительное введение в конструкцию биметаллической пластины, закрепленной в камере нагрева и выполненной из материалов с различными температурными коэффициентами линейного расширения, и металлической вставки, один конец которой соединен с биметаллической пластиной, а другой конец расположен между узлами-заготовками, позволяет путем исключения вакуумплотного барьера достичь в вакуумированной полости между узлами-заготовками необходимой степени вакуума, равной ее значению в камере нагрева.

Технико-экономическим преимуществом предлагаемого изобретения по сравнению с известными является повышение качества соединяемых деталей за счет обеспечения требуемой степени вакуума.

Источники информации

1. Патент RU 2111577.

2. Патент RU 2184406.

3. Патент US 3397278.

4. Н.Н.Хоменко и др. Техника и технология сварки в электрическом поле крупногабаритных стеклокремниевых узлов-заготовок. / Приборы и системы управления. - 1992. - C.41-43.

Установка для диффузионной сварки, содержащая камеру нагрева, нагреватели, токоведущие шины, изоляторы и пакетное устройство, состоящее из системы сжатия узлов-заготовок, нижней и верхней токопроводящих плит, отличающаяся тем, что она снабжена биметаллической пластиной, закрепленной в камере нагрева и выполненной из материалов с различными температурными коэффициентами линейного расширения, и металлической вставкой, один конец которой соединен с биметаллической пластиной, а другой конец расположен между узлами-заготовками.



 

Похожие патенты:

Изобретение относится к технологии диффузионной сварки многослойных изделий из разнородных нержавеющих сталей, преимущественно из нержавеющих мартенситных сталей типа марки 09X17H и нержавеющих аустенитных сталей типа марки 0Х18Н10Т.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении оболочек путем свободной формовки из листовых заготовок из титанового сплава в условиях сверхпластичности, широко используемых в технике в качестве таких изделий, как, например, сосуды давления топливных систем космических аппаратов, баллоны для транспортировки сжиженных газов, буи радиоантенн, поплавки для уровнемеров.
Изобретение относится к машиностроению, а именно к изготовлению слоистых сотовых панелей из титановых сплавов. .

Изобретение относится к способу малодеформирующей диффузионной сварки керамических элементов, к изготовленным таким способом монолитам и их применениям. .

Изобретение относится к диффузионной сварке, в частности к оборудованию для ее осуществления, и может быть использовано в авиационной и других отраслях промышленности.

Изобретение относится к электронным устройствам, использующим микроканальные пластины (МКП), а более конкретно - к способам соединения микроканальной пластины с диэлектрическим изолятором.
Изобретение относится к сварке, а именно к диффузионной сварке слоистых конструкций из титановых сплавов, преимущественно криволинейного профиля, и может быть использовано, например, при изготовлении теплообменников энергетических силовых установок.

Изобретение относится к области машиностроения и может быть использовано для изготовления оружия (клинков, сабель, ножей и т.д.), а также для изготовления инструмента для обработки различных материалов (кожи, пластмассы, древесины).
Изобретение относится к области изготовления слоистого композиционного материала посредством диффузионной сварки листовых заготовок

Изобретение относится к способам неразъемного соединения изделий из сплавов на основе никелида титана (TiNi, нитинол) и представляет собой диффузионную сварку с использованием жидкой фазы
Изобретение относится к приборостроению и может применяться при изготовлении полупроводниковых микромеханических устройств, например, чувствительных элементов интегральных датчиков

Изобретение относится к области металлургии, а именно к производству изделий из литейных жаропрочных сплавов на никелевой основе, и может быть использовано при изготовлении деталей газотурбинных двигателей, в особенности полых тонкостенных лопаток турбины. Для сохранения высоких механических свойств и точных геометрических размеров детали из литейных никелевых сплавов ЖС32 или ЖС32МОНО при их изготовлении осуществляют соединение не менее двух фрагментов детали из упомянутых сплавов путем диффузионной конгломерации с приложением нагрузки 11 г/мм2 в вакууме при температуре 1320°C в течение 40 мин - 1 часа. 7 ил., 3 пр.

Изобретение относится к сварке давлением, а именно к диффузионной сварке с низкоинтенсивным силовым воздействием, и может быть использовано для изготовления тонкостенных конструкций из титанового сплава ОТ4-1. Способ диффузионной сварки заготовок из титановых сплавов включает нагрев до температуры сварки, соединение заготовок в два этапа в течение времени, достаточного для образования физического контакта между соединяемыми поверхностями заготовок на первом этапе с приложением сварочного давления и для развития объемного взаимодействия на втором этапе без приложения сварочного давления. На первом этапе нагрев осуществляют в интервале температуры α+β→β превращения и в течение времени τсв, которое определяют из условия: τcв=k·p-n·exp(E/RT)·lnRa, где k - эмпирический коэффициент, характеризующий кинетику развития площади физического контакта между соединяемыми поверхностями заготовок, равный 1,75·10-7 сек, р - численное значение сварочного давления, МПа, n -эмпирический коэффициент, характеризующий ползучесть материала заготовки, равный 1,2, Е - энергия активации, Дж/моль, R - газовая постоянная, Дж/(К-моль), Т - температура нагрева. К, Ra - численное значение шероховатости свариваемых поверхностей, мкм. Снижается накопленная деформация в заготовках, а также энергоемкость изготовления тонкостенных титановых конструкций. 1 пр.

Изобретение может быть использовано при изготовлении аппаратов для нефтегазопереработки и сварки технологических трубопроводов. После механической обработки поверхностей деталей их покрывают защитной консервирующей смазкой и соединяют между собой обработанными поверхностями. Осуществляют нагрев зоны сварки до температуры 0,7-0,8 температуры плавления металла деталей и прикладывают к ним давление. В процессе сварки на соединяемые детали накладывают циклическую нагрузку низкочастотными колебаниями от 100 до 250 Гц с амплитудой 0,1-0,2 мм в круговом направлении в плоскости, параллельной плоскости продольной оси сварного шва. Низкочастотные колебания оказывают положительное воздействие на ускорение развития физического контакта за счет увеличения скорости ползучести материала. Кроме того, переменные напряжения вызывают генерирование новых источников дислокации и увеличение подвижности последних, что интенсифицирует взаимную диффузию металлов. 2 ил.

Изобретение может быть использовано при соединении деталей из титана и стали путем диффузионной сварки, в частности, для получения турбинных валов для газотурбинных двигателей. Две тонкие вставки (14, 16) из ниобия или ванадия и меди помещают между титановой деталью (10) и стальной деталью (12) соответственно. Проводят горячее изостатическое сжатие сборки деталей и вставок в вакууме при температуре от 900 до 950°C и давлении от 1000 до 1500 бар в течение приблизительно двух часов. Осуществляют контролируемое охлаждение. Изостатическое сжатие приводит к снижению напряжения сдвига во вставках, обеспечивающего отсутствие их повреждения. 3 н. и 12 з.п. ф-лы, 6 ил.
Изобретение может быть использовано при изготовлении слоистых тонкостенных титановых конструкций из листового материала, в частности, выпускных окон энергетических установок для вывода пучка электронов. Между технологическими листами размещают пакет, содержащий плоские решетки с мелкозернистой пластинчатой структурой и размещенный между ними элемент из фольги с крупнозернистой пластинчатой структурой. Устанавливают пакет в сварочной камере и осуществляют диффузионную сварку. При этом проводят нагрев в атмосфере нейтрального газа до температуры сварки с изотермической выдержкой при этой температуре в течение 15-20 минут. Сварочное давление создают за счет вакуумирования сварочной камеры. Проводят последующее охлаждение. Нагрев с изотермической выдержкой и охлаждение осуществляют при атмосферном давлении нейтрального газа. Вакуумирование сварочной камеры для создания сварочного давления осуществляют до разряжения 0,1-1 Па. Способ обеспечивает получение высоких механических свойств изготавливаемого изделия. 1 пр.

Изобретение может быть использовано для изготовления многослойных металлических панелей, например, в аэрокосмическом машиностроении. Предварительно листы заполнителя локально соединяют между собой по пересекающимся зонам. Сваренные листы заполнителя размещают в штампе между листами обшивок и нагревают. Производят формование ячеек заполнителя путем подачи газа под давлением между листами заполнителя с осуществлением диффузионной сварки ячеек между собой и с листами обшивок. Одновременно с этим в полость штампа подают аргон с температурой 400-600°C для осуществления пластической деформации титанового сплава при температуре ниже 700°C, что связано с изменением диффузионной подвижности легирующих элементов замещения и их перераспределением в твердых α- и β-растворах титана. Способ обеспечивает повышение прочностных характеристик металлических панелей и уменьшение нестабильности геометрических размеров. 2 ил.
Наверх