Способ герметизации зазора между двумя поверхностями из магнитопроводящего и немагнитного материала с помощью магнитной жидкости

Изобретение относится к способам герметизации и может применяться в машиностроении для герметизации зазора между двумя поверхностями, одна из которых выполнена из немагнитного, а вторая из магнитопроводящего материалов. Способ заключается в том, что при герметизации зазора между двумя поверхностями из магнитопроводящего и немагнитного материалов с помощью магнитной жидкости на магнитопроводящей поверхности выполняют элементы-концентраторы в виде канавок, зубцов, выступов с острыми кромками, поверхности располагают так, чтобы острые кромки элементов-концентраторов были максимально приближены к немагнитной поверхности. В зазор между поверхностями вводят магнитную жидкость, после чего на зазор накладывают магнитное поле, вектор напряженности которого перпендикулярен плоскости зазора. Технический результат: увеличение удерживающей способности зазора практически на порядок. 3 ил.

 

Предлагаемое изобретение относится к уплотнительной технике и может применяться в машиностроении для герметизации зазора между двумя поверхностями, одна из которых выполнена из немагнитного материала, а вторая из магнитопроводящего материала.

Известен способ герметизации зазора с помощью магнитной жидкости между двумя поверхностями из магнитопроводящего и немагнитного материалов (фиг.3), в котором магнитопроводящая поверхность выполнена не сплошной, а имеет разрыв. В промежутках между частями поверхности создается магнитное поле, вектор напряженности которого направлен вдоль поверхности, сюда же помещена магнитная жидкость. (Данный способ использован в опоре, защищенной патентом №3734578 США, МКИ F16C 39/06).

Недостатком способа является его низкая эффективность. Это обусловлено тем, что энергия магнитного поля недостаточно эффективно используется. Максимальная энергия магнитного поля сосредоточена в промежутке между частями магнитопроводящей поверхности и не определяет удерживающую способность магнитожидкостной пробки. Свойства пробки определяет энергия потоков рассеяния, замыкающаяся через уплотняемый зазор, которая невелика.

Технический результат, достигаемый изобретением, заключается в повышении эффективности способа герметизации зазора между двумя поверхностями, одна из которых выполнена из немагнитного материала, а вторая из магнитопроводящего материала с помощью магнитной жидкости.

Технический результат достигается тем, что при герметизации зазора между двумя поверхностями из магнитопроводящего и немагнитного материалов с помощью магнитной жидкости на магнитопроводящей поверхности выполняют элементы-концентраторы в виде канавок, зубцов, выступов с острыми кромками, поверхности располагают так, чтобы острые кромки элементов-концентраторов были максимально приближены к немагнитной поверхности, в зазор между поверхностями вводят магнитную жидкость, после чего на зазор накладывают магнитное поле, вектор напряженности которого перпендикулярен плоскости зазора.

На фиг.1 показан пример реализации способа с помощью элементов-концентраторов, выполненных в виде зубцов треугольной формы с острыми кромками на магнитопроводящей поверхности, положение магнитожидкостных пробок в зазоре.

На фиг.2 показано графическое представление распределения напряженности магнитного поля в зазоре (сплошная кривая соответствует зубцам с острыми кромками, пунктирная кривая - зубцам с закругленными кромками).

На фиг.3 показана реализация способа, являющегося прототипом.

Способ герметизации заключается в следующем. На магнитопроводящей поверхности выполняют элементы-концентраторы - канавки, зубцы, выступы, имеющие острые кромки. Поверхности располагают так, чтобы острые кромки элементов-концентраторов были максимально приближены к немагнитной поверхности. В зазор между поверхностями вводят магнитную жидкость, после чего на зазор накладывают магнитное поле, вектор напряженности которого перпендикулярен плоскости зазора. Под воздействием поля магнитная жидкость образует отдельные магнитожидкостные пробки, расположенные в области кромок элементов.

Способ осуществляется следующим образом. Магнитный поток пересекает зазор 1, образованный магнитопроводящей поверхностью 2 и немагнитной поверхностью 3, перпендикулярно его плоскости. Элементы-концентраторы (зубцы, выступы, канавки) 4, выполненные на магнитопроводящей поверхности 2, перераспределяют магнитный поток в зазоре 1 (пунктирная кривая на фиг.2). Элементы-концентраторы на магнитопроводящей поверхности - зубцы, выступы, канавки - имеют острые кромки 5, около которых существует локальный всплеск напряженности магнитного поля, поэтому кривая распределения напряженности в зазоре приобретает резко выраженный характер (сплошная кривая на фиг.2). Напряженность магнитного поля быстро убывает при удалении от кромки 5 в любом направлении. Магнитная жидкость втягивается магнитным полем в зоны, где поле имеет максимальную напряженность и образует пробки 6 с повышенным внутренним давлением. Острые кромки 5 элементов-концентраторов максимально приближены к немагнитной поверхности 3, поэтому магнитожидкостные пробки 6 перекрывают зазор 1 и препятствуют прохождению через него уплотняемой среды.

Каждая магнитожидкостная пробка способна воспринимать перепад давлений, который определяется по формуле:

где µ0 - магнитная постоянная, M - намагниченность магнитной жидкости, H - напряженность магнитного поля в зазоре, Hmax и Hmin - максимальная и минимальная напряженности магнитного поля на границах магнитожидкостной пробки в момент удержания ею максимального перепада давлений.

Результирующий перепад давлений определяется суммой перепадов давлений всех магнитожидкостных пробок в зазоре 1.

Особенностью кромочного всплеска напряженности магнитного поля является большая величина на пике и быстрое убывание напряженности поля при удалении от острой кромки, поэтому необходимо стремиться к уменьшению минимального зазора между острой кромкой элемента-концентратора магнитопроводящей поверхности и немагнитной поверхностью. По этой же причине размеры элементов-концентраторов на магнитопроводящей поверхности - зубцов, выступов, канавок - могут быть маленькими. В зазоре вместо одной магнитожидкостной пробки с ограниченной удерживающей способностью (прототип) создается множество магнитожидкостных пробок, которые обеспечивают суммарный удерживающий уплотнением перепад давления на порядок выше на единицу длины зазора.

Таким образом, предлагаемый способ позволяет увеличить удерживающую способность зазора, образованного поверхностью из магнитопроводящего материала и поверхностью из немагнитного материала, с помощью магнитной жидкости практически на порядок.

Способ герметизации зазора между двумя поверхностями из магнитопроводящего и немагнитного материалов с помощью магнитной жидкости, отличающийся тем, что на магнитопроводящей поверхности выполняют элементы-концентраторы в виде канавок, зубцов, выступов с острыми кромками, поверхности располагают так, чтобы острые кромки элементов-концентраторов были максимально приближены к немагнитной поверхности, в зазор между поверхностями вводят магнитную жидкость, после чего на зазор накладывают магнитное поле, вектор напряженности которого перпендикулярен плоскости зазора.



 

Похожие патенты:

Изобретение относится к области испытательной техники и может быть использовано в выходном контроле производств уплотнительных устройств или режимных испытаниях при научных исследованиях.

Изобретение относится к измерительной технике. .

Изобретение относится к области машиностроения, в частности к уплотнительной технике. .

Изобретение относится к области испытательной техники и предназначено для использования в выходном контроле производств уплотнительных устройств или режимных испытаниях при научных исследованиях.

Изобретение относится к машиностроению и предназначено для уплотнения вращающихся валов. .

Изобретение относится к машиностроению и предназначено для заправки магнитожидкостных уплотнений вращающихся валов. .

Изобретение относится к машиностроению и предназначено для герметизации вращающихся валов. .

Изобретение относится к способам заправки магнитожидкостного уплотнения вала. .

Изобретение относится к области машиностроения, в частности к подшипникам скольжения, и может быть использовано в металлургической, химической, энергетической и других отраслях промышленности в условиях повышенных температур.

Изобретение относится к сверхпроводящим магнитным подшипникам, область применения которых совпадает с областями применения обычных подшипников для снижения потерь на трение и уменьшения износа трущихся поверхностей пар трения в устройствах с вращающимся валом.

Изобретение относится к электротехнике, в частности к устройствам электромагнитной разгрузки опор и магнитного подвеса. .

Изобретение относится к устройствам подшипников скольжения, содержащим постоянные магниты с вертикально расположенной несущей осью вращения, применяемым в станках по обработке материалов, в генераторах электрического тока, в транспортных средствах, в промышленности строительных материалов, в химической, сельскохозяйственной и в др.

Изобретение относится к машиностроению, а именно к подшипникам на магнитной подвеске, и может быть широко использовано в узлах и механизмах во всех отраслях народного хозяйства.

Изобретение относится к способу и устройству для снижения коэффициента трения в подшипниках скольжения, применяемых в станках по обработке материалов, в транспортных средствах передачи сырья и продукции, и может быть использовано в промышленности строительных материалов, в химической, в сельскохозяйственной и в др.

Изобретение относится к электротехнике, в частности к устройствам электромагнитной разгрузки опор и магнитного подвеса. .

Изобретение относится к магнитным подшипникам и, в частности, к упорным магнитным подшипникам. .

Изобретение относится к области электротехники и может быть использовано в подшипниковых патронах со смазкой на базе магнитных материалов. .

Изобретение относится к области подшипников для вращающихся валов, в частности к магнитным подшипникам на высокотемпературных сверхпроводниках, и может быть использовано в машиностроении, авиадвигателестроении и других областях техники
Наверх