Способ питания нагрузки искусственного спутника земли и автономная система электропитания для его реализации

Изобретение относится к электротехнической промышленности и может быть использовано при создании и эксплуатации автономных систем электропитания искусственных спутников Земли (ИСЗ). Технический результат заключается в повышении надежности автономной системы электропитания и эффективности использования первичного источника ограниченной мощности. Для этого заявленный способ заключается в стабилизации напряжения на нагрузке сериесным преобразователем от первичного источника электроэнергии - солнечной батареи, с выходным напряжением, близким к максимальному входному напряжению сериесного преобразователя, и разрядными преобразователями от вторичного источника электроэнергии - «n» аккумуляторных батарей, согласовании работы первичного и вторичного источников электроэнергии посредством зарядных преобразователей и ограничении напряжения солнечной батареи на заранее установленном верхнем уровне. Кроме того, предлагается автономная система электропитания для реализации способа, содержащая солнечную батарею, подключенную к нагрузке через сериесный преобразователь, «n» аккумуляторных батарей с устройствами контроля, зарядные преобразователи, разрядные преобразователи, при этом каждый преобразователь содержит схему управления, выполненную в виде широтно-импульсного модулятора, содержащего измерительные органы напряжения нагрузки, а схемы управления зарядных преобразователей связаны с измерительными шунтами, установленными в силовых цепях соответствующих аккумуляторных батарей, и дополнительно содержат измерительные органы напряжения солнечной батареи. 2 н.п. ф-лы, 1 ил.

 

Предлагаемое изобретение относится к электротехнической промышленности и может быть использовано при создании и эксплуатации автономных систем электропитания искусственных спутников Земли (ИСЗ).

Известны способы питания нагрузки постоянным, стабильным напряжением, реализуемые системами питания нагрузки постоянным током, описанными в издании «Системы электропитания космических аппаратов», Новосибирск, ВО "Наука", 1994 г.

Известные способы питания нагрузки постоянным током предусматривают стабилизацию напряжения от первичного источника ограниченной мощности (солнечной батареи) на нагрузке стабилизированными преобразователями различного типа.

Известна автономная система электропитания, патент №2059988, содержащая солнечную батарею, подключенную к нагрузке через сериесный преобразователь, n аккумуляторных батарей со схемами защиты, подключенных через зарядные преобразователи к солнечной батарее, а через разрядные преобразователи - к нагрузке, причем каждый преобразователь содержит схему управления, выполненную в виде широтно-импульсного модулятора, содержащего измерительные органы выходного напряжения и тока преобразователя, при этом измерительные органы выходного напряжения разрядных преобразователей подключены к их выходам через переключатели уровня стабилизации, связанные со схемами защиты аккумуляторных батарей и нагрузкой, а схемы защиты аккумуляторных батарей связаны с зарядными и разрядными преобразователями и нагрузкой.

Недостатком известных способов и автономных систем электропитания является то, что они не решают задачи повышения эффективности использования первичного источника электроэнергии (солнечной батареи).

Известен способ питания нагрузки постоянным током, описанный в авторском свидетельстве №1771037, предусматривающий выбор выходного напряжения первичного источника ограниченной мощности (солнечной батареи) по максимально допустимому уровню входного напряжения стабилизированного преобразователя, принятый за прототип.

Недостатком известного способа является то, что при прохождении ИСЗ «теневого» участка орбиты солнечная батарея охлаждается и при выходе на освещенный участок ее вольт-амперная характеристика изменяется, причем напряжение холостого хода может увеличиться практически до 200%, в зависимости от степени охлаждения солнечной батареи (длительности теневого участка и особенностей конструкции ИСЗ).

Этот факт сводит эффективность известного способа, при значительных колебаниях температуры солнечной батареи в процессе эксплуатации ИСЗ, практически к нулю.

Известна автономная система электропитания ИСЗ, патент №2313169, которая выбрана в качестве прототипа.

Согласно известному патенту параллельно выходным шинам солнечной батареи подключат ограничитель максимального напряжения солнечной батареи, который при достижении напряжения порога срабатывания открывается и начинает пропускать через себя ток, величина которого изменяется таким образом, чтобы сумма токов через ограничитель и тока в нагрузку соответствовала точке на вольт-амперной характеристике солнечной батареи, при которой выходное напряжение солнечной батареи равно напряжению уставки ограничителя, при этом в качестве ограничителя напряжения установлен шунтовой ограничитель напряжения с широтно-импульсной модуляцией, а между входом ограничителя и входным емкостным фильтром установлен диод в прямом направлении прохождения тока солнечной батареи. Кроме того, параллельно диоду установлен коммутатор.

Недостатком известной автономной системы электропитания является наличие избыточных функционально-конструктивных элементов, а именно шунтового преобразователя, силового диода, силового коммутатора. Все эти элементы снижают удельные энергетические характеристики автономной системы электропитания ИСЗ. Кроме того, установка дополнительного силового диода в цепи первичного источника электроэнергии снижает эффективность использования последнего, а применение механических силовых коммутаторов снижает надежность автономной системы электропитания.

Задачей заявляемого изобретения является повышение надежности автономной системы электропитания и эффективности использования первичного источника ограниченной мощности.

Поставленная задача решается тем, что ограничение напряжения солнечной батареи проводят регулированием тока заряда аккумуляторных батарей. Для этого в автономной системе электропитания схемы управления зарядных преобразователей дополнительно содержат измерительные органы напряжения солнечной батареи.

На чертеже приведена функциональная схема автономной системы электропитания ИСЗ для реализации заявляемого способа.

Автономная система электропитания ИСЗ содержит солнечную батарею 1, подключенную к нагрузке 2 через сериесный преобразователь напряжения 3 и аккумуляторные батареи 41-4n, подключенные через зарядные преобразователи 51-5n к солнечной батарее 1, а через разрядные преобразователи 61-6n - к входу выходного фильтра сериесного преобразователя напряжения 3.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторным батареям 41-4n подключены устройства контроля аккумуляторных батарей 71-7n, связанные входом с аккумуляторными батареями 41-4n для контроля напряжения, давления и температуры аккумуляторов, а выходом - с нагрузкой 2.

В силовой цепи заряда-разряда аккумуляторных батарей 41-4n установлены измерительные шунты 81-8n.

Зарядные преобразователи 51-5n состоят из регулирующего ключа 9, управляемого схемой управления 10.

При этом зарядные преобразователи 51-5n не содержат традиционных вольтодобавочных узлов, что обеспечивается условием высокого напряжения солнечной батареи и существенно повышает удельные энергетические характеристики и коэффициент полезного действия зарядных преобразователей.

Разрядные преобразователи 61-6n состоят из регулирующего ключа 11, управляемого схемой управления 12.

Сериесный преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра С1 и выходного фильтра на диоде D, дросселе L и конденсаторе С.

Схемы управления: 10 зарядных преобразователей 51-5n, 12 - разрядных преобразователей 61-6n, 14 - сериесного преобразователя напряжения 3, выполнены в виде широтно-импульсных модуляторов, связанных измерительными органами с напряжением нагрузки автономной системы электропитания.

Схемы управления 10 зарядных преобразователей 51-5n дополнительно связаны с измерительными шунтами 81-8n в силовых цепях аккумуляторных батарей 41-4n и с напряжением солнечной батареи. Измерительные органы выполнены в виде резистивных делителей напряжения: для напряжения нагрузки - на резисторах R1 и R2, а для напряжения солнечной батареи - на резисторах R3 и R4.

Устройство работает следующим образом. В процессе эксплуатации аккумуляторные батареи 41-4n работают в основном в режиме хранения и периодических дозарядов от солнечной батареи 1 через зарядные преобразователи 51-5n. Такой режим работы позволяет содержать их в постоянной готовности на случай аварийных ситуаций (потеря ориентации ИСЗ на Солнце) или на прохождение штатных теневых участков орбиты.

При этом зарядные преобразователи работают в режиме заряда стабильными токами для обеспечения заряда аккумуляторных батарей оптимальными режимами.

В случае недостатка избыточной мощности солнечной батареи для обеспечения заряда аккумуляторных батарей заданной величиной токов в дело вступает обратная связь по напряжению нагрузки автономной системы электропитания, ограничивая токи заряда из условия обеспечения стабильности напряжения нагрузки.

В случае повышения напряжения солнечной батареи до установленного верхнего уровня (выход ИСЗ из «тени») начинает работать обратная связь по напряжению солнечной батареи, устанавливая величину тока заряда (заряд всей избыточной мощностью солнечной батареи) из условия непревышения напряжения солнечной батареи установленного верхнего уровня.

Длительность работы зарядного преобразователя в режиме заряда всей избыточной мощностью, при достижении максимально допустимого напряжения солнечной батареи (и «удержания» этого значения напряжения солнечной батареи по верху путем регулирования зарядного тока), определяется временем нагрева солнечной батареи, которое по данным расчетов и летных измерений составляет 5-8 мин, т.е. для геостационарной орбиты суммарное время работы зарядного преобразователя в этом режиме не превысит 12 ч за год.

Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.

При прохождении теневых участков орбиты либо при нарушении ориентации нагрузка 2 питается от аккумуляторных батарей 41-4n через разрядные преобразователи 61-6n.

Устройства контроля 71-7n контролируют напряжение, давление и температуру аккумуляторов аккумуляторных батарей 41-4n и передают информацию об их состоянии в нагрузку 2.

Далее бортовая ЭВМ в составе нагрузки 2 реализует алгоритм управления зарядом аккумуляторных батарей. По результатам анализа телеметрической информации алгоритм в процессе эксплуатации ИСЗ может меняться через командно-измерительную радиолинию ИСЗ.

Таким образом, питание нагрузки постоянным током от источника ограниченной мощности (солнечной батареи) будет обеспечиваться при высоком напряжении на входе стабилизированного преобразователя, что позволяет повысить эффективность использования первичного источника ограниченной мощности и надежность автономной системы электропитания.

1. Способ питания нагрузки искусственного спутника Земли, заключающийся в стабилизации напряжения на нагрузке сериесным преобразователем от первичного источника электроэнергии - солнечной батареи, с выходным напряжением близком к максимальному входному напряжению сериесного преобразователя и разрядными преобразователями от вторичного источника электроэнергии - «n» аккумуляторных батарей, согласовании работы первичного и вторичного источников электроэнергии посредством зарядных преобразователей и ограничении напряжения солнечной батареи на заранее установленном верхнем уровне, отличающийся тем, что ограничение напряжения солнечной батареи проводят регулированием тока заряда аккумуляторных батарей.

2. Автономная система электропитания для реализации способа по п.1, содержащая солнечную батарею, подключенную к нагрузке через сериесный преобразователь, «n» аккумуляторных батарей с устройствами контроля, подключенные через зарядные преобразователи к солнечной батарее, а через разрядные преобразователи к нагрузке, причем каждый преобразователь содержит схему управления, выполненную в виде широтно-импульсного модулятора, содержащего измерительные органы напряжения нагрузки, кроме того, схемы управления зарядных преобразователей связаны с измерительными шунтами, установленными в силовых цепях соответствующих аккумуляторных батарей, отличающаяся тем, что схемы управления зарядных преобразователей дополнительно содержат измерительные органы напряжения солнечной батареи.



 

Похожие патенты:

Изобретение относится к энергоустановкам (ЭУ) на основе батарей солнечных элементов (БСЭ) и накопителей энергии и способам их регулирования. .

Изобретение относится к электротехнике и может быть использовано при проектировании автономных систем электропитания космических аппаратов. .

Изобретение относится к области электротехники. .

Изобретение относится к электротехнической промышленности и может быть использовано при создании и эксплуатации автономных систем электропитания искусственных спутников Земли (ИСЗ).

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ).

Изобретение относится к автоматике электрических сетей и предназначено для подключения потребителей к резервному источнику электроснабжения. .

Изобретение относится к возобновляемым источникам первичного электропитания, предназначенным для заряда и подзаряда аккумуляторов любых типов с номинальным напряжением от 3 до 9 В с емкостью до 2,5 ампер-часов.

Изобретение относится к вторичным источникам электропитания радиоэлектронной аппаратуры в качестве первичного источника солнечной батареи (СБ). .

Группа изобретений относится к области фотогальванических генераторов. Технический результат заключается в повышении КПД преобразования генератора. Для этого предложен способ управления фотогальваническим генератором, содержащим по меньшей мере один фотогальванический элемент и множество n соединенных параллельно статических преобразователей, при этом каждый преобразователь соединен электрически по меньшей мере с одним фотогальваническим элементом, включающий этапы, на которых определяют мощность, генерируемую указанным по меньшей мере одним фотогальваническим элементом и сравнивают ее с пиковой мощностью; осуществляют сравнение с пороговыми значениями P1, P2,…, Pn-1; при этом пороги определяют как значения мощностей по существу в точке пересечения кривых КПД при возрастающем числе преобразователей для, по меньшей мере, одного фотогальванического элемента; подключают i преобразователей, если измеренное значение мощности находится в пределах от Pi-1 до Pi, или подключают все преобразователи, если измеренное значение мощности превышает Pn-1. 3 н. и 19 з.п. ф-лы, 6 ил., 3 табл.

Группа изобретений относится к области фотоэлектрических генераторов. Технический результат заключается в оптимизации управления энергией, производимой каждой группой фотоэлектрических элементов генератора, с целью наилучшего согласования мощности генератора с потребностями нагрузки и/или эффективной компенсацией отказов и/или колебаний инсоляции, оказывающей воздействие на некоторые элементы. Для этого предложена система электронного управления фотоэлектрическим генератором, содержащая: множество статических микропреобразователей, каждый из которых электрически соединен с одним или несколькими фотоэлектрическими элементами, являющимися частью всей совокупности указанных элементов генератора, по меньшей мере один модуль реконфигурации, предназначенный для переноса потоков энергии от указанных микропреобразователей к нагрузке, центральный электронный процессор, предназначенный для управления изменением потоков энергии, переносимых указанным по меньшей мере одним модулем реконфигурации, и для управления замыканием накоротко или шунтированием по меньшей мере одного микропреобразователя через указанный по меньшей мере один модуль реконфигурации. 4 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано в преобразователях постоянного тока с нелинейными параметрами в альтернативных источниках энергии. Технический результат - повышение количества энергии, отбираемой от солнечной батареи, В способе питания нагрузки от солнечной батареи использован преобразователь повышающего типа, в котором коммутацию ключевых элементов осуществляют синхронизирующим и управляющим сигналами, измеряют выходную характеристику преобразователя и формируют управляющий сигнал, эквивалентный коэффициенту заполнения силового ключа. 2 ил.

Изобретение относится к солнечной энергетике и предназначено для для ориентации по Солнцу источников гелиоэнергетики и других источников электромагнитного излучения (ЭМИ). Технический результат – повышение точности и устойчивости ориентации источников гелиоэнергетики независимо от географической широты и погодных условий. Для этого в способе ориентации посредством направленной антенны принимают электромагнитные колебания, излучаемые Солнцем и отраженные рефлектором, которые снимают посредством вибратора, сканирующего в фокальной плоскости антенны, перпендикулярной оси рефлектора. В спектре принятого сигнала подавляют тепловой шум антенно-фидерных устройств. Полученный сигнал преобразуют в сигнал в узкой полосе частот и выделяют огибающую этого сигнала, которую распределяют по тактам времени в соответствии с положением вибратора относительно секторов приема. Сигнал отклонения положения антенны в азимутальном направлении формируют по разности уровней усредненных составляющих огибающей, при прохождении вибратора горизонтальных секторов приема, сигнал отклонения положения антенны по углу места - при прохождении вертикальных секторов приема. 2 н. и 2 з.п. ф-лы, 11 ил.

Изобретение относится к солнечной энергетике, в частности к получению электрической энергии путем прямого преобразования солнечного излучения, и приборостроению. Предложен способ повышения эффективности отбора электрической энергии от параллельно соединенных батарей фотоэлектрических преобразователей, имеющих различные напряжения, или при шунтировании диодом части фотоэлектрических преобразователей вследствие затенения, загрязнения, выхода из строя. Способ заключается в их согласовании посредством последовательного включения в них дополнительного элемента питания с изменяемыми электрическими характеристиками, номинал которых устанавливается из соображения получения максимальной мощности. Электрическая энергия в дополнительный элемент питания подается от этих же батарей фотоэлектрических преобразователей через устройство, обеспечивающее гальваническую развязку, или внешнего источника электрической энергии. Обеспечивается повышение эффективности отбора электрической энергии от батарей фотоэлектрических преобразователей. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к электротехнике и может быть использовано при проектировании и создании автономных энергетических установок, предназначенных для питания потребителей от фотоэлектрических солнечных батарей, эксплуатируемых длительное время при существенно изменяющихся условиях эксплуатации

Изобретение относится к электротехнике, а именно к преобразовательной технике и может быть использовано для электропитания удаленных от электрических сетей объектов, например автономных метеостанций, строительных объектов, электроинструментов служб спасения и пр
Наверх