Униполярная машина постоянного тока с гусеничным токосъемом

Изобретение относится к области электрических машин, в частности к униполярным машинам (УМ) постоянного тока. Наиболее близким аналогом предложенной машины по физической и технической сущности является униполярная машина (УМ) постоянного тока с дисковым ротором. Наличие у названной машины минимум двух скользящих контактов на один диск снижает не только ее электромеханические характеристики, но и сужает область применения, так как нельзя получить на ее электрическом выводе относительно и необходимое большое напряжение. Кроме того, имеющее место между неподвижными электрическими щеточными контактами и подвижными частями якоря машины трения скольжения ведет к искрению на местах их соприкосновения и соответственно к повышению там переходных электрических сопротивлений и преждевременному износу машины. Преодоление недостатков щеточно-скользящих контактов возможно с помощью токосъема на основе электропроводящей жидкости. Однако создавать надежно герметизированные конструкции аппаратов жидкостного, особенно периферийного кольцевого, токосъемов, не допускающих утечки инертного газа и паров электропроводящей жидкости, достаточно трудоемко и дорого. Кроме того, в режимах пуска и торможения УМ, а также при относительно высоких скоростях на жидкостный слой в кольцевом канале действуют центробежные и гравитационные, магнитные и электромагнитные силы, а также силы трения, которые отрицательно влияют на ее работу. Техническим результатом заявленного изобретения являются улучшения электромеханических характеристик, повышение надежности в работе, увеличение износостойкости, повышение в несколько раз рабочего напряжения и расширение области ее применения. Технический результат достигается тем, что в предложенной конструкции УМ отсутствуют как скользящие механоэлектрические, так и жидкостные электрические контакты. В качестве таких контактов в предложенной УМ служат электропроводящие ремни, которыми опоясаны, как правило, два электропроводящих диска якоря, вращающиеся в одном направлении относительно постоянных магнитных полей между магнитными полюсами противоположной полярности, силовые линии которых направлены в противоположные стороны. Этому способствует и то, что поверхности периметров первого и последнего электропроводящих гусеничных дисков якоря машины связаны с ее электрическим выводом через электропроводящие гусеницы и два неподвижных обода. УМ с гусеничным ротором может работать и в генераторном, и в двигательном режимах. В генераторном режиме при вращении электропроводящих гусеничных и ременных дисков от постороннего двигателя в их секторах в радиальном направлении или к их центрам, или от центров, в зависимости от того, в каком направлении они вращаются, в каком направлении их пересекают магнитные силовые линии статора, возникают ЭДС в силу закона электромагнитной индукции, которые, суммируясь на клеммах электрического вывода, дают результирующее напряжение = U. В двигательном режиме при подаче на электрический вывод УМ постоянного напряжения = U от постороннего источника по секторам электропроводящих дисков и ее якоря потекут постоянные токи в радиальном направлении, которые взаимодействуют с магнитными полями постоянных магнитов статора, что заставит их вращаться в одинаковом направлении синхронно. 2 ил.

 

Изобретение относится к области электрических машин, в частности к машинам постоянного тока. Наиболее близким аналогом предложенной машины по физической и технической сущности является униполярная машина (УМ) постоянного тока с дисковым ротором.

Наличие у названной машины минимум двух скользящих контактов на один диск снижает не только ее электромеханические характеристики, но и сужает область применения, так как нельзя получить на ее электрическом выводе относительно и необходимое большое напряжение. Кроме того, имеющее место между неподвижными электрическими щеточными контактами и подвижными частями якоря машины трение скольжения ведет к искрению на местах их соприкосновения и соответственно к повышению там переходных электрических сопротивлений и преждевременному износу машины.

Преодоление недостатков щеточно-скользящих контактов возможно с помощью токосъема на основе электропроводящей жидкости. Однако создавать надежно герметизированные конструкции аппаратов жидкостного, особенно периферийного кольцевого, токосъемов, не допускающих утечки инертного газа и паров электропроводящей жидкости, достаточно трудоемко и дорого. Кроме того, в режимах пуска и торможения УМ, а также при относительно высоких скоростях на жидкостный слой в кольцевом канале действуют центробежные и гравитационные, магнитные и электромагнитные силы, а также силы трения, которые отрицательно влияют на ее работу.

Техническим результатом заявленного изобретения являются улучшения электромеханических характеристик, повышение надежности в работе, увеличение износостойкости, повышение в несколько раз рабочего напряжения и расширение области ее применения.

Технический результат достигается, тем, что в предложенной конструкции УМ отсутствуют как скользящие механоэлектрические, так и жидкостные электрические контакты. В качестве таких контактов в предложенной УМ служат электропроводящие ремни, которыми опоясаны, как правило, два электропроводящих диска якоря, вращающиеся в одном направлении относительно постоянных магнитных полей между магнитными полюсами противоположной полярности, силовые линии которых направлены в противоположные стороны.

Кроме того, поверхности периметров двух выходных электропроводящих гусеничных дисков якоря машины связаны с ее электрическим выводом через электропроводящие гусеницы и два неподвижных обода.

Предложенная униполярная машина постоянного тока с гусеничным токосъемом, выполненная в виде четырех униполярных машин с общим статором и электрически последовательно соединенными дисками, отличающаяся тем, что в качестве ее статора служат две крайние и один центральный общие неподвижные постоянные магниты с круглыми, имеющими в центрах отверстия для свободного прохождения двух параллельных, состоящих из диэлектрических и электропроводящей частей осей вращения, отодвинутыми друг от друга полюсами противоположной полярности, между которыми и на упомянутых осях установлены электрически последовательно соединенные электропроводящими частями последних и таким же ремнем, служащие в качестве ее ротора две пары ременных и гусеничных дисков, один из последней которых присоединен через движущиеся по поверхности его периметра электропроводящие гусеницы и неподвижный обод к положительной клемме ее электрического вывода, а другой, в таком же порядке - к отрицательному.

На фигурах 1 и 2 показаны соответственно поперечный и продольный разрезы предложенной УМ. На них приняты следующие обозначения: 1 - электропроводящая гусеница; 2 - электропроводящий обод; 3 - гусеничный диск; 4 - электропроводящий ремень; 5 - ременный диск; 6, 6' - соответственно электропроводящая и диэлектрическая части оси вращения; 7 - крайний постоянный магнит статора; 8 - центральный постоянный магнит статора.

Предложенная УМ постоянного тока с гусеничным токосъемом работает следующим образом.

1. Генераторный режим. При вращении гусеничных и ременных дисков 3 и 5 соответственно против часовой стрелки с угловой скоростью ω от постороннего двигателя в их секторах в силу явления электромагнитной индукции возникнут электродвижущие силы (ЭДС) по направлению радиусов, как это показано на фигурах. Это связано с тем, что они при этом вращаются в постоянных магнитных полях статора. ЭДС, возникшие в каждом диске, суммируясь на электрическом выводе, создадут постоянное напряжение = U. Если при этом к этому выводу присоединить определенную электрическую нагрузку, по якорной цепи УМ потечет ток якоря iя по направлению, показанному на фигурах.

2. Двигательный режим. При подключении якорной цепи УМ к источнику постоянного напряжения = U ток якоря iя потечет от положительной клеммы электрического ее вывода через электропроводящие первый неподвижный обод 2, гусеницы 1, первый гусеничный диск 3, электропроводящую часть 6 одной оси вращения ротора, первый ременный диск 5, электропроводящий ремень 4, другой ременный диск 5, электропроводящую часть 6 другой оси вращения, другой гусеничный диск 3, гусеницы 1 и другой неподвижный обод 2 к отрицательной клемме. То есть ток якоря потечет против направления, показанного на фигурах, в режиме генератора. Токи якоря, текущие по всем секторам всех электропроводящих дисков, будут при этом взаимодействовать с магнитными полями созданными круглыми полюсами крайних 7 и центрального 8 постоянных магнитов статора, что приводит к возникновению пондеромоторных сил, действующих на все названных четыре диска ротора УМ. В итоге все диски будут вращаться по направлению против часовой стрелки в соответствии с правилом левой руки с угловой скоростью ω.

Источники информации

1. Бертинов А.И. и др. Униполярные Эл. машины с жидкометаллическими токосъемами. - М.-Л.: Энергия, 1966.

2. Бертинов А.И. Специальные электрические машины. - М.: Энергия, 1982.

3. Иродов И.А. Электромагнетизм. - М.: Бином, 2003.

4. Калашников С.Г. Электричество. - М.: Наука, 1985.

5. Копылов И.П. Электрические машины. - М.: Энергоатомиздат, 1986.

6. Ландсберг Г.С. Эл. учебник физики; Т.1, Механика. - М.: Наука, 1968.

7. Матвеев А.Н. Механика и теория относительности. - М.: ВШ, 1986.

Униполярная машина постоянного тока с гусеничным токосъемом, выполненная в виде четырех униполярных машин с общим статором и электрически последовательно соединенными дисками, отличающаяся тем, что в качестве ее статора служат два крайние и один центральный общие неподвижные постоянные магниты с круглыми, имеющими в центрах отверстия для свободного прохождения двух параллельных, состоящих из диэлектрических и электропроводящей частей осей вращения, отодвинутыми друг от друга полюсами противоположной полярности, между которыми и на упомянутых осях установлены электрически последовательно соединенные электропроводящими частями последних и таким же ремнем, служащие в качестве ее ротора, две пары ременных и гусеничных дисков, один из последней которых соединен через движущиеся по поверхности его периметра электропроводящие гусеницы и неподвижный обод к положительной клемме ее электрического вывода, а другой, в таком же порядке - к отрицательной.



 

Похожие патенты:

Изобретение относится к области электротехники, в частности к униполярным электрическим машинам (УМ) постоянного тока. .

Изобретение относится к области электротехники и электромеханики, а конкретнее - к электрическим машинам постоянного тока. .

Изобретение относится к электротехнике и может быть использовано в качестве привода с регулируемой частотой вращения. .

Изобретение относится к области электротехники и электромашиностроения и может быть использовано при производстве униполярных бесколлекторных торцевых электрических машин.

Изобретение относится к области электротехники, а именно к обратимым и реверсивным машинам постоянного тока с постоянным магнитом. .

Изобретение относится к области электромашиностроения, а именно к электрическим машинам, частота вращения которых синхронизирована с частотой сети переменного тока.

Изобретение относится к области электромашиностроения, в частности к роторам синхронных машин с бесщеточным возбуждением, а также к электромагнитным муфтам. .

Изобретение относится к электротехнике, является электрической машиной, которая может найти применение в транспортных средствах, для транспортировки грузов и т.д. .

Изобретение относится к электротехнике, а именно к униполярным электрическим машинам, предназначенным для питания электрофизической аппаратуры, технологического оборудования и т.д.

Изобретение относится к области электрических машин, в частности к униполярным машинам (УМ). .

Изобретение относится к области электротехники, в частности к униполярным электрическим машинам (УМ) постоянного тока. .

Изобретение относится к области электротехники, в частности к электрическим машинам постоянного тока. .

Изобретение относится к электродвигателям велосипедов

Изобретение относится к области электротехники и касается электрических машин постоянного тока, в частности к униполярным машинам постоянного тока

Изобретение относится к области электротехники, а именно к электрическим машинам постоянного тока, в частности к униполярным машинам постоянного тока

Изобретение относится к области электротехники и касается электрических машин, в частности к униполярным машинам постоянного тока (УМ)

Изобретение относится к области электротехники, а именно к электрическим машинам постоянного тока, в частности к униполярным машинам (УМ) постоянного тока

Изобретение относится к области электротехники и касается электрических машин, в частности униполярных машин (УМ) постоянного тока. Технический результат заявленного изобретения состоит в повышении долговечности УМ постоянного тока и ее рабочего напряжения без увеличения угловой скорости ротора, что, соответственно, обеспечивает возможность расширения области применения УМ постоянного тока. Данный технический результат достигается тем, что в УМ постоянного тока отсутствуют щеточные контакты, но имеются жидкостные контакты. Многодисковая униполярная машина жидкостными токосъемами содержит статор и ротор, разделенные воздушными зазорами, и выполнена в виде последовательно соединенных УМ с дисковыми роторами, установленными на общий вал вращения. При этом согласно изобретению статором служат несколько неподвижных полых цилиндрических постоянных магнитов, продолжениями полюсов которых служат дискообразные с выступами и отверстиями по их серединам магнитопроводы, торцевые поверхности которых симметрично расположены по обеим сторонам подвижных роторных электрически последовательно соединенных дисков, острые края которых частично погружены в электропроводящие жидкости, залитые в нижние части полостей статора, а центры их попарно соединены электропроводящими одетыми на вал вращения с изоляцией полыми цилиндрами, причем средние полые постоянные магниты статора попарно соединены между собой электропроводами, а крайние - соответственно с положительной и отрицательной клеммами ее электрического вывода. В предлагаемой УМ достаточно просто обеспечивается последовательное включение необходимого количества дисков в электрическую цепь машины для достижения номинального рабочего напряжения без увеличений их угловых скоростей. 2 ил.
Наверх