Способ поверхностного упрочнения прокатных валков


C21D1/09 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2398892:

Открытое акционерное общество "Новокузнецкий металлургический комбинат" (RU)

Изобретение относится к черной металлургии, в частности к поверхностному упрочнению прокатных валков. Для повышения качества упрочненного слоя, а также стойкости и работоспособности прокатных валков проводят обработку поверхности сжатой сканирующей дугой прямого действия в аргоне, при этом упрочнение поверхности прокатных валков осуществляют пульсирующей дугой при силе тока 300-250 А, напряжении 18-30 В с наложением полос по винтовой линии при скорости перемещения дуги по поверхности 1,0-1,3 м/мин, с зазором между вольфрамовым электродом и упрочняемой поверхностью валка 10-12 мм, причем защиту электрода упрочняемой поверхности валка от окисления осуществляют аргоном при его расходе 600-700 л/час. 2 табл., 1 ил.

 

Изобретение относится к черной металлургии, в частности к поверхностному упрочнению прокатных валков.

Известен способ упрочнения прокатного валка, включающий механическую обточку валка, нагрев под наплавку со скоростью 50-100°С/ч до температуры 250-300°С, дуговую наплавку при плотности 40-45 А/мм2 со скоростью наплавки 25-30 м/ч и проведении отпуска при температуре 300-400°С с выдержкой в течении 1,5-2 ч [1].

Существенным недостатком данного способа являются значительная длительность упрочняющей обработки за счет проведения нескольких операций, а также недостаточная стойкость и прочность упрочненного слоя прокатного валка.

Известен также способ термической обработки прокатных валков, включающий индукционный нагрев под закалку, охлаждение и отпуск валка [2].

Существенным недостатком данного способа являются высокая трудоемкость термической обработки валков, а также недостаточная глубина и твердость упрочненного слоя прокатного валка.

Известен также выбранный в качестве прототипа способ поверхностного упрочнения, включающий обработку поверхности сжатой сканирующей дугой прямого действия в аргоне при скорости перемещения 90-180 м/ч, силе тока дуги 200-300 А, с наложением упрочненных полос встык и перекрытием на 1/3-1/2 ширины [3].

Существенным недостатком данного способа является недостаточная глубина и повышенная хрупкость упрочненного слоя.

Желаемыми техническими результатами изобретения являются повышение качества упрочненного слоя, а также стойкости и работоспособности прокатных валков.

Для этого предлагается способ поверхностного упрочнения прокатных валков, включающий обработку поверхности сжатой сканирующей дугой прямого действия в аргоне, при этом упрочнение поверхности прокатных валков осуществляют пульсирующей дугой при силе тока 300-250 А, напряжении 18-30 В с наложением полос по винтовой линии при скорости перемещения дуги по поверхности 1,0-1,3 м/мин, с зазором между вольфрамовым электродом и упрочняемой поверхностью валка 10-12 мм, причем защиту электрода упрочняемой поверхности валка от окисления осуществляют аргоном при его расходе 600-700 л/час.

Заявляемые параметры подобраны экспериментальным путем исходя из следующих предпосылок, что при силе тока дуги менее 250 А не достаточно прогревается поверхность, в результате этого с поверхности валка образуется структура мартенсита недостаточной глубины, равной менее 300 мкм. При силе тока более 300 А с поверхности валка образуется слой с ярко выраженной текстурой кристаллизации. При напряжении, под которым находится неплавящийся электрод, менее 18 В недостаточно прогревается поверхность для выполнения процесса закалки. При более 30 В происходит оплавление обрабатываемой поверхности. При перемещении дуги по упрочняемой поверхности со скоростью менее 1,0 м/мин не обеспечивается требуемой глубины закаленный слой. При скорости перемещения более 1,3 м/мин возникает недогрев поверхности и в поверхностном слое не формируется закаленная структура. При зазоре между вольфрамовым электродом и обрабатываемой поверхностью менее 10 мм происходит оплавление обрабатываемой поверхности, а при зазоре более 12 мм недостаточно прогревается поверхность для выполнения процесса закалки. При расходе аргона менее 600 л/час происходит разрыв дуги, а при более 700 л/час дуга не возникает. Для обеспечения сплошного закаленного слоя используется перемещение дуги по поверхности по винтовой линии с наложением упрочненных участков.

Способ упрочнения поверхности прокатных валков с помощью электродуговой закалки поверхности валка пульсирующей дугой был реализован на экспериментальной установке (Фиг.1) и заключается в следующем.

Прокатный валок (1) устанавливали в патроне передней бабки (2) вальцетокарного станка (3). Устанавливали и крепили закалочную головку (4) на суппорте (5) вальцетокарного станка (3). Поперечным перемещением суппорта (5) устанавливали зазор между вольфрамовым электродом (6) закалочной головки (4) и обрабатываемой поверхностью калибра (7) прокатного валка (1). Между поверхностью валка (1) и вольфрамовым электродом (6), находящимся под напряжением, посредством искрового высокочастотного разряда возбуждали электрическую дугу обратной полярности. Для защиты вольфрамового электрода (6) и нагретой поверхностью валка (1) от окисления в дуговой промежуток подавали инертный газ аргон. Для рассредоточения тепловой дуги, регулирования формы и площади пятна нагрева на поверхности валка (1) использовали электромагнитное управление дугой. Регулирование термического цикла в поверхностном слое валка (1) осуществляли изменением напряжения и тока дуги, формы и скорости перемещения пятна нагрева по поверхности валка (1). Упрочнение поверхности осуществляли путем перемещения пятна нагрева по поверхности валка (1) с наложением упрочненных участков по винтовой линии.

Способ реализован в промышленных условиях для упрочнения валков чистовой клети рельсобалочного цеха на вальцетокарном станке модели 1К826. Между поверхностью валка и вольфрамовым электродом, находящимся под напряжением, посредством искрового высокочастотного разряда возбуждали электрическую дугу обратной полярности. Для защиты электрода и нагретого металла валка от окисления в дуговой промежуток подавали инертный газ аргон. Для рассредоточения тепловой мощности дуги, регулирования формы и площади пятна нагрева на поверхности валка использовали электромагнитное управление дугой. Регулирование термического цикла в поверхностном слое валка осуществляли изменением напряжения и тока дуги, формы и скорости перемещения пятна нагрева по поверхности валка. Упрочнение поверхности с заданной площадью осуществляли путем перемещения пятна нагрева по поверхности валка с наложением упрочненных участков по прямой или винтовой линии.

Заявляемый способ был использован при упрочнении валков чистовой клети рельсобалочного цеха для прокатки швеллера №22У и №40У.

Необходимый упрочненный слоя получали путем изменения силы тока дуги от 250 до 300 А, напряжения от 18 до 30 В, скорости перемещения дуги от 1 до 1,3 м/мин, а также регулирования зазора между электродом и упрочняющей поверхностью от 10 до 12 мм. При этом расход аргона изменяли от 600 до 700 л/ч.

Заявляемый способ упрочнения обеспечил на прокатных валках получение упрочненного слоя глубиной 460-500 мкм с твердостью 7500-8000 МПа. При этом стойкость валков на швеллере №40У повысилась от 1500 т до 2500 т, на швеллере №22У - от 500 т до 800 т. Снижение расхода валков на 2,5 кг/т.

Технологические параметры упрочняющей обработки приведены в таблице 1. Результаты исследования глубины и твердости упрочненного слоя приведены в таблице 2.

Таблица 1
№ п/п Сила тока, А Напряжение, В Зазор, мм Расход аргона, л/час Скорость перемещения, м/мин
1 250 18 10 600 1
2 260 20 11 650 1,2
3 280 25 12 690 1,25
4 300 30 10 700 1,3
прототип 200-300 - - - 1,3-1,5
Таблица 2
№ п /п Глубина упрочненного слоя, мкм Микротвердость, МПа
1 490 7800
2 460 7500
3 480 8000
4 500 8000
прототип 600-970 9000

Источники информации

1. Патент RU 2339469 С2.

2. Патент RU 2163644.

3. Поверхностное упрочнение чугуна с шаровидным графитом электрической дугой прямого действия. // Изв. вуз. Черная металлургия. 1994. №10. С.48-49.

Способ поверхностного упрочнения прокатных валков, включающий обработку поверхности сжатой сканирующей дугой прямого действия, возбуждаемой между вольфрамовым электродом и упрочняемой поверхностью при силе тока 300-250 A с наложением полос по винтовой линии, защиту электрода и упрочняемой поверхности валка от окисления аргоном, отличающийся тем, что упрочнение поверхности прокатных валков осуществляют пульсирующей дугой при напряжении 18-30 В, скорости перемещения дуги по поверхности 1,0-1,3 м/мин с зазором между электродом и упрочняемой поверхностью валка 10-12 мм и при расходе аргона 600-700 л/ч.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к деформационно-термической обработке покрытий никель-алюминий с эффектом памяти формы, и может быть использовано в металлургии, машиностроении и медицине.

Изобретение относится к термоимпульсной обработке. .
Изобретение относится к восстановлению физико-механических свойств металла корпусов энергетических реакторов. .

Изобретение относится к области металлургии и предназначено для электроконтактного нагрева металлических профильных изделий перед проведением операции правки на правильно растяжной машине.

Изобретение относится к области обработки сварных металлоконструкций. .
Изобретение относится к металлургии, в частности к химико-термической обработке стальных деталей и может применяться для защиты шпилек газозапорной арматуры от коррозии.

Изобретение относится к машиностроению и может быть применено для упрочнения деталей машин, работающих в условиях фреттинг-коррозии. .

Изобретение относится к способу лазерной обработки поверхности катания и гребня железнодорожных колесных пар из различных марок стали, работающих в условиях трения-износа.

Изобретение относится к непрерывному отжигу и нанесению покрытия методом горячего погружения кремнийсодержащего стального листа. .

Изобретение относится к области термообработки
Изобретение относится к черной металлургии, в частности к способу термической обработки пластин - шаблонов, применяемых для замера точности геометрии рельсовой продукции

Изобретение относится к способу и устройству для плазменной обработки тела вращения и может найти применение при упрочнении железнодорожных колес

Изобретение относится к металлургии и может быть использовано для термической обработки деталей из бериллиевой бронзы

Изобретение относится к области металлургии, а именно к получению детали из стали, обладающей многофазной микроструктурой

Изобретение относится к области металлургии, а именно к получению детали из стали, обладающей многофазной микроструктурой

Изобретение относится к закалочным средам, применяемым при термообработке металлов, а именно к закалочным средам на основе водорастворимых полимеров
Изобретение относится к области металлургии и машиностроения и может быть использовано, в частности, для изготовления матриц штампов
Изобретение относится к области металлургии и машиностроения и может быть использовано, в частности, для изготовления матриц штампов

Изобретение относится к области черной металлургии, в частности к производству холоднокатаной анизотропной электротехнической стали, применяемой для изготовления крупногабаритных магнитопроводов
Наверх