Способ повышения достоверности поступающей информации в автоматизированной системе управления технологическими процессами, функционирующей в условиях крайнего севера



Способ повышения достоверности поступающей информации в автоматизированной системе управления технологическими процессами, функционирующей в условиях крайнего севера
Способ повышения достоверности поступающей информации в автоматизированной системе управления технологическими процессами, функционирующей в условиях крайнего севера
G05B1 - Регулирующие и управляющие системы общего назначения; функциональные элементы таких систем; устройства для контроля или испытания таких систем или элементов (пневматические и гидравлические приводы или системы, действующие с помощью пневмогидравлических средств вообще F15B; вентили как таковые F16K; механические элементы конструкции G05G; чувствительные элементы /датчики/ см. в соответствующих подклассах, например в G12B, в подклассах классов G01,H01; устройства для корректирования см. в соответствующих подклассах, например H02K)

Владельцы патента RU 2400793:

Общество с ограниченной ответственностью "Газпром добыча Ямбург" (RU)

Изобретение относится к области добычи природного газа, и в частности к обеспечению оптимального ведения комплекса технологических процессов сбора и подготовки газа к дальнему транспорту с использованием АСУ ТП. Суть решения заключается в том, что в базу данных АСУ ТП вносят информацию о датчиках, позволяющую определить для каждого из них перечень датчиков, работоспособность которых можно контролировать по его показаниям, и индивидуальные алгоритмы оценки функционирования каждого датчика по показаниям датчиков из перечня, на основе которых в процессе функционирования АСУ ТП в реальном масштабе времени осуществляют контроль функционирования датчиков по указанному перечню, и если показания датчика не противоречат показаниям датчиков из перечня, то они заносятся в базу данных для принятия соответствующего решения, в противном случае эти данные аннулируются. В случае выдачи сигнала об аварийной ситуации аналогичным образом осуществляют внеочередной контроль функционирования датчика, выдавшего аварийный сигнал, по указанному перечню. Технический результат - повышение точности в соблюдении режима разработки нефтегазоконденсатного месторождения и ведении технологических процессов АСУ ТП и оперативное выявление отказавших и нестабильно работающих контуров АСУ ТП для исключения попадания ложных данных в базу данных АСУ ТП. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области добычи природного газа, и в частности к обеспечению оптимального ведения комплекса технологических процессов сбора и подготовки газа к дальнему транспорту с использованием автоматизированной системы управления технологическими процессами (АСУ ТП).

Известен способ повышения достоверности поступающей информации в АСУ ТП, который заключается в том, что повышение помехоустойчивости системы управления в нормальных условиях достигается заземлением или занулением экранов соединительных кабелей датчиков и контрольно-измерительной аппаратуры. В систему включают фильтры, обеспечивающие непрерывную фильтрацию возбуждаемых в контурах контрольно-измерительной системы помех. Отфильтрованные показания датчиков заносятся в базу данных АСУ ТП для принятия соответствующего решения об управляющем воздействии на ход контролируемого технологического процесса (см., например, Гутников B.C. Фильтрация измерительных сигналов. - Л.: Энергоатомиздат, 1990, 192 с.).

Существенным недостатком указанного способа является то, что наличие вечномерзлых грунтов, являющихся электрическим изолятором толщиной несколько сотен метров, практически исключает создание стандартного контура заземления для всех подсистем АСУ ТП. Более того, чрезвычайно низкая влажность воздуха в помещениях и пониженная влажность воздуха вне помещений приводит к сильной электризации ряда функционирующих устройств и появлению в воздухе объемных зарядов с высокой напряженностью электрических полей. В результате, наряду с помехами, возбуждаемыми этими полями, возникают еще и пространственные разряды, вызывающие не только возбуждение дополнительных помех высокой интенсивности в контрольно-измерительных контурах АСУ ТП, но и вывод из строя ряда устройств, которые не всегда удается вовремя распознать. В результате не удается своевременно принять необходимые меры для ликвидации возникшей аварийной ситуации, при этом неизбежные потери качества добываемой и подготавливаемой продукции к транспорту и нарушение режима эксплуатации промысла, ведут к потере извлекаемых объемов сырья из месторождения.

Наиболее близким по технической сущности к заявляемому изобретению является способ повышения достоверности поступающей информации в АСУ ТП, который заключается в том, что повышение помехоустойчивости систем управления в стандартных условиях обеспечивают заземлением или занулением экранов соединительных кабелей датчиков и контрольно-измерительной аппаратуры. В систему включают активные и пассивные фильтры, обеспечивающие непрерывную фильтрацию возбуждаемых внешними электромагнитными полями в контурах контрольно-измерительной системы помех. Отфильтрованные от внешних шумов показания датчиков заносятся в базу данных АСУ ТП. Они используются для подтверждения соответствия хода технологических процессов заданным параметрам и принятия необходимых решений об управляющих воздействиях на ход контролируемого технологического процесса для удержания его параметров в заданных технологическими регламентами допусках (см., например, Михайлов Е.В. Помехозащищенность информационно-измерительных систем. - М: Энергия, 1985, 104 с.).

Существенным недостатком указанного способа является то, что наличие вечномерзлых грунтов, являющихся электрическим изолятором толщиной несколько сотен метров, практически исключает создание стандартного контура заземления для всех подсистем АСУ ТП, что приводит к возникновению сбоев в работе контрольно-измерительной аппаратуры системы. Более того, чрезвычайно низкая влажность воздуха в помещениях и пониженная влажность воздуха вне помещений приводит к сильной электризации ряда функционирующих устройств и появлению в воздухе объемных зарядов с высокой напряженностью электрических полей. В результате, наряду с помехами, возбуждаемыми этими полями, возникают еще и пространственные разряды, вызывающие не только возбуждение дополнительных помех высокой интенсивности в контрольно-измерительных контурах АСУ ТП, но и вывод из строя ряда устройств, которые не всегда удается вовремя распознать.

В результате данный способ не позволяет своевременно выявлять сбои в показаниях отдельных датчиков и исключать их из рассмотрения и аварийные ситуации, по которым необходимо вовремя принимать меры для их ликвидации. Соответственно, возникают неизбежные потери качества добываемой и подготавливаемой продукции к транспорту и нарушается режим эксплуатации промысла, ведущий к потере извлекаемых объемов сырья из месторождения.

Задачей, на решение которой направлено настоящее изобретение, является устранение отмеченных недостатков.

Техническим результатом, достигаемым от реализации изобретения, является повышение достоверности информации, поступающей от датчиков АСУ ТП, работающей в условиях Крайнего Севера, своевременное выявление отказавших и нестабильно работающих датчиков и контрольно-измерительной аппаратуры и соблюдение режима разработки и эксплуатации месторождения с ведением всего комплекса технологических процессов, управление которыми производится с исключением информации, поступающей от отказавших и нестабильно работающих датчиков и подсистем.

Указанная задача решается, а технический результат достигается за счет того, что способ повышения достоверности поступающей информации в автоматизированной системе управления технологическими процессами (АСУ ТП) нефтегазоконденсатного промысла, функционирующей в условиях Крайнего Севера, включает заземление или зануление экранов соединительных кабелей датчиков и контрольно-измерительной аппаратуры, непрерывную фильтрацию возбуждаемых в контурах контрольно-измерительной системы помех с помощью активных и пассивных фильтров и занесение отфильтрованных показаний датчиков в базу данных АСУ ТП для принятия соответствующего решения об управляющем воздействии на ход контролируемого технологического процесса, при этом в базу данных АСУ ТП вносят информацию о датчиках, позволяющую определить для каждого из них перечень датчиков, работоспособность которых можно контролировать по его показаниям, и индивидуальные алгоритмы оценки функционирования каждого датчика по показаниям датчиков из перечня, а на основе алгоритмов в процессе функционирования АСУ ТП в реальном масштабе времени осуществляют контроль функционирования датчиков по указанному перечню, и если показания датчика не противоречат показаниям датчиков из перечня, то они заносятся в базу данных для принятия соответствующего решения, в противном случае эти данные аннулируются.

При выдаче сигнала об аварийной ситуации осуществляют внеочередной контроль функционирования датчика, выдавшего аварийный сигнал по указанному перечню, и если показания датчика не противоречат показаниям датчиков из перечня, то они заносятся в базу данных для принятия соответствующего решения, в противном случае эти данные аннулируются.

Заявляемое изобретение отработано и реализовано на газовых промыслах ООО «Газпром добыча Ямбург».

На чертеже показана укрупненная схема установки комплексной подготовки газа (УКПГ), на примере которой приведено описание реализации заявляемого изобретения по самой простой технологии.

Для простоты изложения представлен пример только для здания переключающей арматуры (ЗПА) установки комплексной подготовки газа (УКПГ).

Технологический процесс на ЗПА протекает следующим образом: газ от кустов скважин по внутрипромысловым шлейфам поступает в ЗПА, где размещены блоки узлов входа шлейфов, позволяющие автоматически поддержать заданную производительность кустов газовых скважин. Далее этот газ на выходе ЗПА смешивается и по двум коллекторам подается в цех подготовки газа УКПГ.

Таблицу списка датчиков, размещенных в ЗПА, для взаимной проверки их показаний можно представить исходя из приведенной на чертеже схемы в виде следующей матрицы:

,

где P1…Рn, F1…Fn, АС1…АСn - показания датчиков давления, расхода и аварийной сигнализации соответственно, установленных на входных шлейфах УКПГ; n - номер входного шлейфа;

ACКГС 1…АСКГС 2 - показания датчиков аварийной сигнализации, установленных на первом и втором коллекторах сырого газа соответственно;

РКСГ 1…РКСГ 2 - показания датчиков давления, установленных на первом и втором коллекторах сырого газа соответственно;

FКСГ 1…FКСГ 2 ~ показания датчиков расхода, установленных на первом и втором коллекторах сырого газа соответственно.

Список датчиков для взаимной проверки сгруппирован в каждом из столбцов вышеуказанной матрицы, число которых равно числу шлейфов от кустов газовых скважин.

Способ реализуют следующим образом при появлении недостоверной информации. Рассмотрим случай, когда на шлейфе 1 сработала аварийная сигнализация, т.е. на выходе датчика АС1 получен аварийный сигнал, например порыв трубы. Сразу производят проверку показаний датчиков из списка, т.е. всех датчиков из одного столбца указанной матрицы. Если будет обнаружено, что расход и давление газа в этом шлейфе, давление и расход газа в коллекторах сырого газа не изменили своего значения, тогда однозначно можно утверждать, что срабатывание датчика АС1 ложное и произошло из-за влияния помех.

В случае отсутствия сигналов об обнаружении аварийной ситуации АСУ ТП регулярно, через заданные интервалы времени осуществляет в автоматическом режиме контроль работоспособности каждого датчика и контрольно-измерительных приборов по перечню с учетом введенных в нее алгоритмов. В случае выявления недостоверности поступающей информации производится ее оценка по всему комплексу алгоритмов. Учитывая то, что отказ оборудования является ординарным событием в потоке событий, по проведенному анализу автоматически выявляется отказавшее оборудование. Соответственно, на пульт выдается сообщение об отказе, а АСУ ТП исключает из базы данных информацию, поступающую от соответствующего датчика.

Применение данного способа позволяет увеличить достоверность информации, поступающей в АСУ ТП, оперативно выявлять отказ элементов подсистемы АСУ ТП, тем самым повысить эффективность принимаемых управленческих решений и улучшить условия работы обслуживающего персонала на УКПГ, а также снизить численность персонала, занятого обслуживанием АСУ ТП.

1. Способ повышения достоверности поступающей информации в автоматизированной системе управления технологическими процессами (АСУ ТП) нефтегазоконденсатного промысла, функционирующей в условиях Крайнего Севера, включающий заземление или зануление экранов соединительных кабелей датчиков и контрольно-измерительной аппаратуры, непрерывную фильтрацию возбуждаемых в контурах контрольно-измерительной системы помех с помощью активных и пассивных фильтров и занесение отфильтрованных показаний датчиков в базу данных АСУ ТП для принятия соответствующего решения об управляющем воздействии на ход контролируемого технологического процесса, отличающийся тем, что в базу данных АСУ ТП вносят информацию о датчиках, позволяющую определить для каждого из них перечень датчиков, работоспособность которых можно контролировать по его показаниям, и индивидуальные алгоритмы оценки функционирования каждого датчика по показаниям датчиков из перечня, а на основе алгоритмов в процессе функционирования АСУ ТП в реальном масштабе времени осуществляют контроль функционирования датчиков по указанному перечню и, если показания датчика не противоречат показаниям датчиков из перечня, то они заносятся в базу данных для принятия соответствующего решения, в противном случае эти данные аннулируются.

2. Способ по п.1, отличающийся тем, что при выдаче сигнала об аварийной ситуации осуществляют внеочередной контроль функционирования датчика, выдавшего аварийный сигнал по указанному перечню, и, если показания датчика не противоречат показаниям датчиков из перечня, то они заносятся в базу данных для принятия соответствующего решения, в противном случае эти данные аннулируются.



 

Похожие патенты:

Изобретение относится к теплотехнике и касается способа оптимального регулирования температуры в помещении, обеспечивающего заданную температуру воздуха при минимальных затратах на потребляемую энергию.

Изобретение относится к системам автоматического цифрового управления объектами с нестационарными динамическими характеристиками и может найти применение в химической, нефтехимической и других отраслях промышленности.

Изобретение относится к испытаниям электрических систем и может быть использовано в качестве устройства, контролирующего работоспособность аппаратуры управления.

Изобретение относится к испытаниям электрических систем и может быть использовано в качестве устройства, контролирующего работоспособность аппаратуры управления.

Изобретение относится к области испытаний электрических систем и может быть использовано в качестве устройства, контролирующего работоспособность аппаратуры управления и исправности цепей аппаратуры.

Изобретение относится к области испытаний электрических систем и может быть использовано в качестве устройства, контролирующего работоспособность аппаратуры управления и исправности цепей аппаратуры.

Изобретение относится к электрическим устройствам ручного управления и может быть использовано для управления большим числом электродвигателей, электроклапанов, осветительных приборов.

Изобретение относится к тепловлажностной обработке бетонных и железобетонных изделий и позволяет повысить точность управления. .

Изобретение относится к регистрации диагностических данных, которые имеют отношение к работе элемента оборудования. .

Изобретение относится к области измерительной техники и может быть использовано для увеличения межповерочного интервала автоматизированных измерительных систем.

Изобретение относится к области электронных цифровых вычислительных машин. .

Изобретение относится к электроприводам и может быть использовано при создании их систем управления. .

Изобретение относится к робототехнике и может быть использовано при создании систем управления электроприводами роботов. .

Изобретение относится к способу независимого оценивания любого из неизвестных параметров статических объектов с линейно входящими параметрами, а также динамических объектов, приводимых к виду статических объектов.

Изобретение относится к радиотехнике и автоматике, в частности может использоваться в радиолокации для высокоточного оценивания координатной информации. .

Изобретение относится к области транспортного машиностроения и предназначено для автоматического адаптивного управления бесступенчатыми приводами трансмиссий многоприводных транспортных средств.

Изобретение относится к технике автоматического управления, в частности к технике формирования управляющих сигналов
Наверх