Способ изготовления изделий из композита на основе карбида титана



Способ изготовления изделий из композита на основе карбида титана
Способ изготовления изделий из композита на основе карбида титана
Способ изготовления изделий из композита на основе карбида титана
Способ изготовления изделий из композита на основе карбида титана

 


Владельцы патента RU 2401719:

Мамлеев Рустам Фаритович (RU)

Изобретение относится к порошковой металлургии, в частности к изготовлению износостойких изделий из композита на основе карбида титана. Может использоваться для изготовления шаровых затворов, втулок подшипников скольжения. Получают спеченный пористый карбидный полуфабрикат путем вибрационного уплотнения порошка карбида титана и спекания в печи с неокислительной средой. Спеченный полуфабрикат подвергают инфильтрации расплавами металлов в нагревательной камере, образованной графитовым муфелем с плотно закрывающимися нижней и верхней графитовыми крышками. Нагрев муфеля и дополнительный нагрев пропитывающего металла ведут токами высокой частоты в переменном электромагнитном поле индуктора. Способ позволяет упростить технологический процесс и повысить производительность. 5 з.п. ф-лы, 4 ил.

 

Изобретение относится к области порошковой металлургии, а именно к изготовлению износостойких изделий из инфильтрованного композита на основе карбида титана, в частности шаровых затворов, втулок подшипников скольжения и т.д.

Известны способы изготовления изделий из композитов, предусматривающие подготовку пористого карбидного полуфабриката и его инфильтрацию расплавами металлов в неокислительной среде, например в вакууме или среде инертных газов [Киффер Р., Бенезовский Ф. Твердые сплавы. - М.: Металлургия, 1971, глава 5; Патент USA 4327156, МПК B22F 3/00, C22C 1/05, 1982; Патент RU 2093309, МПК B22F 7/04, 1997 г.].

Для реализации способов используют вакуумные электропечи с герметичными камерами и дорогостоящими вольфрамовыми или молибденовыми нагревателями сопротивления, а нагрев садки, как при спекании, так и инфильтрации, осуществляется только косвенно теплопередачей от нагревателей. Во избежание выхода из строя легкоокисляющихся нагревателей разгерметизация камеры печи и извлечение изделий из нее возможно только при полном охлаждении рабочей зоны печи до температуры не выше 150°C. Использование более дорогостоящих электропечей со шлюзовыми камерами и принудительное охлаждение инертными газами повышают производительность труда, но значительно усложняют и удорожают технологический процесс при изготовлении изделий из композита на основе карбида.

Известен способ (прототип) изготовления изделий из композита на основе карбида титана, включающий подготовку керамической формы из огнеупорного материала с верхним и нижним отверстиями, закрытыми карбидными крышками со сквозными порами, получение спеченного пористого карбидного полуфабриката в керамической форме путем вибрационного уплотнения порошка карбида и нагрева карбидной формовки в нагревательной камере печи с неокислительной средой, укладку пропитывающего металла, размещение подготовленной сборки в нагревательной камере печи с неокислительной средой, нагрев сборки и инфильтрацию карбидного полуфабриката пропитывающим металлом через карбидные крышки [Патент RU 2319580, МПК B22F 3/26, B22F 5/10, 2008 г.].

Недостатками аналогов и прототипа являются сложность технологического процесса изготовления изделий из композита на основе карбида титана и низкая производительность труда.

Задачей изобретения является упрощение технологического процесса при изготовлении изделий из композита на основе карбида титана и повышение производительности труда путем дополнительного прямого нагрева изделий.

Поставленная задача решается способом изготовления изделий из композита на основе карбида титана, включающим подготовку керамической формы из огнеупорного материала с верхним и нижним отверстиями, получение пористого карбидного полуфабриката в керамической форме путем вибрационного уплотнения порошка карбида при закрытых карбидными крышками отверстиях и спекания карбидной формовки в нагревательной камере печи с неокислительной средой, укладку пропитывающего металла, размещение подготовленной сборки в нагревательной камере печи с неокислительной средой, нагрев сборки теплопередачей от муфеля и инфильтрацию карбидного полуфабриката пропитывающим металлом через карбидные крышки, отличающимся тем, что сборку при инфильтрации карбидного полуфабриката располагают в нагревательной камере, образованной графитовым муфелем с плотно закрывающимися нижней и верхней графитовыми крышками, причем нагрев муфеля и дополнительный нагрев пропитывающего металла ведут токами высокой частоты в переменном электромагнитном поле индуктора.

Спекание может осуществляться в нагревательной камере, образованной графитовым муфелем с плотно закрывающимися нижней и верхней графитовыми крышками.

Спекание и инфильтрация могут осуществляться за одну операцию в нагревательной камере, образованной графитовым муфелем с плотно закрывающимися нижней и верхней графитовыми крышками.

Пропитывающий металл может располагаться вокруг керамической формы в керамическом коробе, а инфильтрация карбидного полуфабриката расплавом металла осуществляться через нижнюю карбидную крышку.

В качестве пропитывающего металла могут быть использованы хромоникелевые, вольфрамомолибденовые стали, никелевые и кобальтовые сплавы.

После проведения процесса инфильтрации металлом нагрев может не выключаться, а форма с заготовкой выводиться из высокотемпературной зоны в нижнем направлении со скоростью 1,0-8,0 мм/мин.

Предлагаемый способ поясняется фигурами.

Фиг.1 - керамическая форма для изготовления заготовки шарового затвора, размещенная в графитовом муфеле:

1 - керамическая форма (электрокорунд);

2 - карбидная крышка;

3 - карбидный полуфабрикат;

4 - пропитывающий металл в виде кусочков;

5 - керамический короб (электрокорунд);

6 - графитовый цилиндрический муфель;

7 - графитовая крышка нижняя;

8 - графитовая крышка верхняя;

9 - графитовая подставка;

10 - привод вертикального перемещения;

11 - индуктор медный водоохлаждаемый;

12 - пирометр радиационный;

13 - преобразователь термоэлектрический (платинородий-платина);

14 - пропитывающий металл в виде трубы;

15 - направление стекания и инфильтрации расплава металла;

16 - теплоизоляция керамическая.

Фиг.2 - заготовка шарового затвора из композита:

17 - заготовка шарового затвора из композита.

Фиг.3 - отпечатки индентора после замера твердости (HRC) на образце из композита TiC-12X18H10T (вырезан из заготовки шарового затвора):

18 - конусные отпечатки от внедрения алмазного индентора.

Фиг.4 - микроструктура композита TiC-12X18H10T (·1000):

19 - зерна карбида титана;

20 - связка 12Х18Н10Т;

21 - поры.

Пример 1

Изготавливали точную заготовку шарового затвора Ду 50 (полый шар: наружный диаметр - 90, толщина стенки - 6, диаметры входного и выходного отверстий - 50 мм) из композита путем инфильтрации спеченного полуфабриката из карбида титана, размещенного в керамической форме из электрокорунда, хромоникелевой сталью марки 12Х18Н10Т (фиг.1).

Керамическую форму 1 изготавливали известным методом по выплавляемым моделям путем 8-кратного нанесения и сушки слоев электрокорунда на легкоплавкую модель с последующим удалением модели из формы и прокалки последней при температуре 950…1000°C.

Порошок карбида титана фракции 60/10 мкм размещали в керамической форме и виброуплотняли. Перед засыпкой порошка карбида титана керамическую форму снизу закрывали крышкой 2 из спеченного карбида титана с открытой пористостью 50-60% и размерами пор 30-50 мкм, которую изготавливали по известной технологии. После виброуплотнения карбидную формовку сверху закрывали второй крышкой 2 и спекали в вакуумной печи ОКБ-8086. Контроль температуры проводили вольфрам-рениевым термоэлектрическим преобразователем. После вакуумирования с остаточным давлением не более 5·10-1 Па в течение 0,5 ч включали нагрев и в течение 4,5 ч температуру доводили до 1600±15°C. При максимальной температуре выдерживали в течение 2,0 ч и отключали нагрев. После охлаждения электропечи до 150°C в течение 6,0 ч камеру открывали и извлекали керамическую форму со спеченным карбидным полуфабрикатом 3. Пористость карбидного полуфабриката составляла 43…45%.

В керамической форме на карбидный полуфабрикат помещали мерные кусочки металла 4 - стали 12Х18Н10Т массой 0,4 кг. Керамическую форму размещали в керамическом коробе 5, полученную сборку помещали в графитовый муфель 6 с нижней графитовой крышкой 7 и закрывали верхней графитовой крышкой 8. Предварительно муфель 6 устанавливали на нижнюю графитовую крышку 7, покоящуюся на графитовой подставке 9 привода вертикального перемещения 10. При помощи привода вертикального перемещения муфель со сборкой вводили в медный водоохлаждаемый индуктор 11. Постоянный контроль температуры проводили радиационным пирометром 12, периодический точный контроль (при выключенном индукторе) - платинородий-платиновым термоэлектрическим преобразователем 13.

Включали индуктор, генерирующий электромагнитные колебания высокой частоты, который нагревал графитовый муфель с нижней и верхней графитовыми крышками, а они, в свою очередь, теплопередачей (излучение и конвекция) нагревали керамическую форму, карбидный полуфабрикат и навеску металла. Кроме того, индуктором напрямую дополнительно нагревалась и навеска металла. В течение 2,0 ч температуру сборки доводили до 1550±15°C. При максимальной температуре выдерживали 0,25 ч и выключали нагрев. В результате такой операции металл расплавлялся и полностью инфильтровывал карбидный полуфабрикат. После охлаждения до 500°C в течение 1,75 ч форму извлекали из графитового муфеля. Дальнейшее охлаждение формы с изделием проводили на воздухе. Полученную заготовку шарового затвора 17 (фиг.2) из композита на основе карбида титана со связкой из стали 12Х18Н10Т извлекали из формы разрушением последней и обрабатывали абразивным инструментом.

На образцах, вырезанных из заготовки, изучали твердость по Роквеллу (фиг.3), остаточную пористость металлографическим методом и микроструктуру композита на растровом электронном микроскопе (фиг.4).

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 4,0 ч, общая получения заготовки из композита - 17,0 ч, твердость - 64…67 HRC, остаточная пористость -1,5…2,5%.

Пример 2

Изготавливали заготовку шарового затвора по примеру 1.

При этом спекание карбидной формовки проводили в графитовом муфеле 1, закрытом нижней 7 и верхней 8 графитовыми крышками (фиг.1). В течение 2,5 ч температуру доводили до 1600±15°C, выдерживали при этой температуре 2,0 ч и выключали нагрев. После охлаждения сборки до 150°C в течение 6,0 ч из муфеля извлекали керамическую форму со спеченным карбидным полуфабрикатом 3. Пористость карбидного полуфабриката составляла 44…46%. Инфильтрацию карбидного полуфабриката проводили по примеру 1.

Результат: продолжительность получения карбидного полуфабриката составляла 10,5 ч, инфильтрации - 4,0 ч, общая получения заготовки из композита - 14,5 ч, твердость - 63…65 HRC, остаточная пористость - 1,7…3,0%.

Пример 3

Изготавливали заготовку шарового затвора по примеру 2.

При этом после проведения операции спекания снимали графитовую крышку 8, на карбидный полуфабрикат 3 помещали пропитывающий металл и муфель обратно закрывали крышкой 8. Продолжительность между открытием и закрытием крышки 8 не превышала 2 с. Сборку охлаждали в течение 0,25 ч до температуры 1550±15°C, при этой температуре выдерживали 0,25 ч и выключали нагрев. После охлаждения до 500°C в течение 1,75 ч форму извлекали из графитового муфеля.

Результат: продолжительность получения карбидного полуфабриката составляла 4,5 ч, инфильтрации - 2,25 ч, общая получения заготовки из композита - 6,75 ч, твердость - 63…65 HRC, остаточная пористость - 1,7…3,0%.

Пример 4

Изготавливали заготовку шарового затвора по примеру 1.

При этом в качестве металла брали сталь хромоникелевую марки 12Х18Н10Т массой 0,4 кг в форме трубы 14, имеющей размеры: наружный диаметр 116, внутренний размер 110, длина 45 мм. Температуру сборки доводили до 1550±15°C, причем продолжительность подъема температуры до максимальной составляла 1,5 ч. После расплавления металл стекал на дно керамического короба по направлению 15 (фиг.1) и через нижнюю карбидную крышку инфильтровывал карбидный полуфабрикат. При максимальной температуре выдерживали 0,25 ч и выключали нагрев. После охлаждения до 500°C в течение 1,75 ч форму извлекали из графитового муфеля.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 3,5 ч, общая получения заготовки из композита - 16,5 ч, твердость - 64…67 HRC, остаточная пористость - 1,5…2,5%.

Пример 5

Изготавливали заготовку шарового затвора по примеру 1. При этом в качестве металла брали сталь вольфрамомолибденовую марки Р6М5 массой 0,4 кг. Режимы спекания карбидной формовки и инфильтрации карбидного полуфабриката были идентичны примеру 1.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 4,0 ч, общая получения заготовки из композита - 17,0 ч, твердость - 68…71 HRC, остаточная пористость - 1,5…2,5%.

Пример 6

Изготавливали заготовку шарового затвора по примеру 1. При этом в качестве металла брали никелевый сплав марки ЖС6У массой 0,4 кг. В течение 1,75 ч температуру сборки доводили до 1500±15°C, при этой температуре выдерживали 0,25 ч и выключали нагрев. После охлаждения до 500°C в течение 1,5 ч форму извлекали из графитового муфеля.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 3,5 ч, общая получения заготовки из композита - 16,5 ч, твердость - 62…64 HRC, остаточная пористость - 1,5…2,5%.

Пример 7

Изготавливали заготовку шарового затвора по примеру 1. При этом в качестве инфильтрующего металла брали кобальтовый сплав, содержащий никель (40%), массой 0,4 кг. Режимы спекания карбидной формовки и инфильтрации карбидного полуфабриката были идентичны примеру 1.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 4,0 ч, общая получения заготовки из композита - 17,0 ч, твердость - 62…64 HRC, остаточная пористость - 1,5…2,5%.

Пример 8

Изготавливали заготовку шарового затвора по примеру 1.

При этом форму с заготовкой выводили из высокотемпературной зоны вниз с помощью специального привода со скоростью 0,5 мм/мин в течение 2,5 ч, после чего нагрев выключали. Далее после охлаждения до 500°C в течение 0,5 ч форму извлекали из графитового муфеля.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 5,25 ч, общая получения заготовки из композита - 18,25 ч, твердость - 64…66 HRC, остаточная пористость - менее 0,5%.

Пример 9

Изготавливали заготовку шарового затвора по примеру 1.

При этом после проведения процесса инфильтрации форму с заготовкой выводили из высокотемпературной зоны муфеля вниз с помощью специального привода со скоростью 1,0 мм/мин в течение 1,5 ч и выключали нагрев. Далее после охлаждения до 500°C в течение 0,75 ч форму извлекали из графитового муфеля.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 4,5 ч, общая получения заготовки из композита - 17,5 ч, твердость - 68…70 HRC, остаточная пористость - менее 0,5%.

Пример 10

Изготавливали заготовку шарового затвора по примеру 8.

При этом форму с заготовкой выводили из высокотемпературной зоны вниз со скоростью 3,0 мм/мин в течение 0,5 ч, после чего выключали нагрев. Далее после охлаждения до 500°C в течение 1,25 ч форму извлекали из графитового муфеля.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 4,0 ч, общая получения заготовки из композита - 17,0 ч, твердость - 69…71 HRC, остаточная пористость - менее 1,0%.

Пример 11

Изготавливали заготовку шарового затвора по примеру 8.

При этом форму с заготовкой выводили из высокотемпературной зоны вниз с помощью специального привода со скоростью 8,0 мм/мин в течение 0,2 ч, после чего нагрев выключали. Далее после охлаждения до 500°C в течение 1,55 ч форму извлекали из графитового муфеля.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 4,0 ч, общая получения заготовки из композита - 17,0 ч, твердость - 67…69 HRC, остаточная пористость - менее 1,5%.

Пример 12

Изготавливали заготовку шарового затвора по примеру 8.

При этом форму с заготовкой выводили из высокотемпературной зоны вниз с помощью специального привода со скоростью 12,0 мм/мин в течение 0,1 ч, после чего нагрев выключали. Далее после охлаждения до 500°C в течение 1,75 ч форму извлекали из графитового муфеля.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 4,1 ч, общая получения заготовки из композита - 17,1 ч, твердость - 64…66 HRC, остаточная пористость - 1,5…2,5%.

Пример 13

По технологии прототипа изготавливали изделие по примеру 1.

Процессы спекания карбидной формовки и инфильтрации полученного пористого полуфабриката вели в вакуумной электропечи модели ОКБ-8086 с вольфрамовыми нагревателями. Температурно-временные режимы спекания проводили по примеру 1. Температурно-временные режимы инфильтрации проводили следующим образом: камеру электропечи вакуумировали до остаточного давления 5·10-1 Па в течение 0,5 ч и включали нагрев. В течение 4,5 ч нагревали до температуры 1550±15°C, выдерживали 0,25 ч и выключали нагрев. Продолжительность охлаждения до 150°C составляла 6,75 ч, после чего открывали вакуумную камеру электропечи и извлекали заготовку.

Результат: продолжительность получения карбидного полуфабриката составляла 13,0 ч, инфильтрации - 12,0 ч, общая получения заготовки из композита - 25,0 ч, твердость - 62…64 HRC, остаточная пористость - 1,5…2,5%.

При нагреве графитовый муфель, нижняя и верхняя графитовые крышки выделяют защитные газы СО и СО2, образующие неокислительную среду. Защитные газы, благодаря их избыточному давлению внутри муфеля, вытекают в зазоры между муфелем и крышками и исключают поступление кислорода воздуха к изделиям. Металл расплавляется и полностью заполняет поровое пространство карбидного полуфабриката с образованием композита на основе карбида титана. Высокочастотное электромагнитное воздействие на расплав металла увеличивает его подвижность и ускоряет инфильтрацию карбидного полуфабриката.

Продолжительность операций спекания карбидной формовки и инфильтрации карбидного полуфабриката уменьшается за счет более высокой эффективности индукционного нагрева по сравнению с нагревом сопротивлением. Расположение пропитывающего металла вокруг керамической формы в виде трубы способствует дополнительному индукционному нагреву последней и ускорению нагрева сборки.

Вывод керамической формы с изделием из графитового муфеля вниз со скоростью 1,0-8,0 мм/мин способствует направленному затвердеванию металла в поровом пространстве карбидного полуфабриката и уменьшению остаточной пористости. Однако, при скорости менее 1,0 мм/мин, чрезмерно большая продолжительность высокотемпературной выдержки создает условия для растворения значительного объема карбида титана в расплаве металла и снижения твердости получаемого композита. Увеличение же скорости сверх 8,0 мм/мин приводит к преимущественному объемному затвердеванию металла с соответствующей остаточной пористостью.

Таким образом, предложенный способ позволяет упростить технологический процесс при получении заготовки из инфильтрованного композита на основе карбида титана и увеличить производительность труда в 1,5-3,5 раза по сравнению с аналогами.

1. Способ изготовления изделий из композита на основе карбида титана, включающий подготовку керамической формы из огнеупорного материала с верхним и нижним отверстиями, закрытыми крышками из карбида со сквозными порами, получение карбидного полуфабриката в керамической форме путем вибрационного уплотнения порошка карбида титана при закрытых карбидными крышками отверстиях и спекания карбидной формовки в нагревательной камере печи с неокислительной средой, укладку пропитывающего металла, размещение подготовленной сборки в нагревательной камере печи с неокислительной средой, нагрев сборки теплопередачей от муфеля и инфильтрацию карбидного полуфабриката пропитывающим металлом через карбидные крышки, отличающийся тем, что сборку при инфильтрации карбидного полуфабриката располагают в нагревательной камере, образованной графитовым муфелем с плотно закрывающимися нижней и верхней графитовыми крышками, причем нагрев муфеля и дополнительный нагрев пропитывающего металла ведут токами высокой частоты в переменном электромагнитном поле индуктора.

2. Способ по п.1, отличающийся тем, что спекание осуществляют в нагревательной камере, образованной графитовым муфелем с плотно закрывающимися нижней и верхней графитовыми крышками.

3. Способ по п.1, отличающийся тем, что спекание и инфильтрацию осуществляют за одну операцию в нагревательной камере, образованной графитовым муфелем с плотно закрывающимися нижней и верхней графитовыми крышками.

4. Способ по п.1, отличающийся тем, что пропитывающий металл располагают вокруг керамической формы в керамическом коробе, а инфильтрацию карбидного полуфабриката расплавом металла осуществляют через нижнюю карбидную крышку.

5. Способ по п.1, отличающийся тем, что в качестве пропитывающего металла используют хромоникелевые, вольфрамомолибденовые стали, никелевые и кобальтовые сплавы.

6. Способ по п.1, отличающийся тем, что после проведения процесса инфильтрации нагрев не выключают, а форму с заготовкой выводят из высокотемпературной зоны в нижнем направлении со скоростью 1,0-8,0 мм/мин.



 

Похожие патенты:
Изобретение относится к порошковой металлургии, в частности спеченным твердым сплавам на основе карбида титана. .

Изобретение относится к способу получения порошка из кермета, состоящего из карбидотитановой основы и карбидов, нитридов и/или боридов IVb, Vb и VIb подгрупп Периодической системы, включающий использование в качестве исходных веществ оксидов титана и элементов подгрупп, которые расплавляют в присутствии углерода в качестве восстановителя.

Изобретение относится к области порошковой металлургии, в частности к технологии производства композиционных материалов из карбидных и металлических компонентов.

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении деталей подшипников качения, работающих в условиях воздействия высоких температур.

Изобретение относится к порошковой металлургии и может быть использовано для изготовления различного металлообрабатывающего инструмента. .

Изобретение относится к металлургии, в частности к материалам с высокой стойкостью к абразивному износу. .

Изобретение относится к порошковой металлургии, в частности к материалам с высокой стойкостью к абразивному износу и коррозии, и может быть использовано, например, при изготовлении секторов размалывающей гарнитуры дисковых мельниц для приготовления древесных полуфабрикатов.

Изобретение относится к области порошковой металлургии, в частности к твердым сплавам. .

Изобретение относится к порошковой металлургии, в частности к износостойким порошковым материалам для режущего инструмента на стальной основе. .
Изобретение относится к средствам управления положением стрелочного перевода железнодорожного, трамвайного пути, в частности, к стрелочной гарнитуре. .

Изобретение относится к способам изготовления армированных стальных изделий, в частности армированных колец. .
Изобретение относится к порошковой металлургии, в частности к изготовлению антифрикционных деталей на основе железа для машиностроения. .

Изобретение относится к порошковой металлургии и нанотехнологиям, в частности к получению композиционных материалов. .

Изобретение относится к порошковой металлургии, а именно к получению изделий из композиционных материалов на основе металлической матрицы, армированной SiC. .
Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминиевого сплава для изготовления деталей, работающих в условиях трения.

Изобретение относится к порошковой металлургии, в частности к изготовлению низкопористых порошковых материалов на основе железа. .
Изобретение относится к области металлургии, а именно к литым композиционным материалам на основе алюминиевого сплава, и может быть использовано для изготовления деталей, обладающих высокой жаропрочностью и износостойкостью.

Изобретение относится к порошковой металлургии, в частности к изготовлению тонкостенных изделий или изделий с внутренней полостью из композита на основе карбидов.
Изобретение относится к порошковой металлургии, в частности к получению инфильтрированных композиционных материалов сталь - твердый сплав. .

Изобретение относится к порошковой металлургии, в частности получению изделий из металлических композиционных материалов Al-SiC
Наверх